
UNIVERSITY OF TECHNOLOGY SYDNEY

FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

APPLYING MODERN TECHNIQUES IN

ARTIFICIAL INTELLIGENCE

TO NEURAL ACTIVITY

WILLIAM SMITH

SUPERVISED BY YU-KAI WANG

ASSISTED BY SAI KALYAN RANGA SINGANAMALLA

A 12 CREDIT POINT PROJECT SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF ENGINEERING

STUDENT NUMBER: 12617066

PROJECT NUMBER: SUM-20-04231

MAJOR: SOFTWARE ENGINEERING

 - 2 -

DECLARATION OF ORIGINALITY

I certify that to the best of my knowledge, the content of this project is my own work. This project

has not been submitted for any degree or other purposes.

I certify that the intellectual content of this project is the product of my own work and that all the

assistance received in preparing this project and sources have been acknowledged.

William Smith

30th January 2021

 - 3 -

ABSTRACT

Humans and machines have never been so tightly connected as they are in the 21st century. The

computer, once a handy tool for mathematicians, is for billions of people suddenly a permenant

and very vital companion. This project is a study in how computers and humans can work closer

than ever; how artificial intelligence can actually decipher human brain waves.

Neural networks, computing models based on the very design of the human brain, can help to

understand real human brain signals using brain-computer interfaces. No screen; no keyboard; the

brain and computer can communicate without impediment. In 2018 a group of researchers created

the EEGNet, a neural network built explicitly for classifying all kinds of neural signals to a high

degree of accuracy. This project seeks to understand their work, how brain-computer interfaces

and artificial intelligence can work together and to recreate their success on a new dataset.

The potential for usages of brain-computer pairings in the modern world range far and wide, from

the medical world to forms of leisure. It offers a non-invasive means by which handicapped people

control their wheelchair by simply thinking about where they want to go, or pilots control their

drones with only their brain as remote control. The use cases of such technology are limited only

by the human imagination. This project breaks down some of the technology required, details the

process of going from nothing to having a fully trained neural network model and successfully

classifies new EEG data with an accuracy of 88%.

 - 4 -

TABLE OF CONTENTS

1. INTRODUCTION .. - 6 -

1.1 ELECTROENCEPHALOGRAPHY... - 6 -

1.2 ARTIFICIAL INTELLIGENCE IN THE 2010S .. - 7 -

1.3 THE MODERN BRAIN-COMPUTER INTERFACE ... - 8 -

1.4 EEGNET ... - 9 -

2. LITERATURE REVIEW... - 10 -

2.1 THE XDAWN ALGORITHM ... - 10 -

2.2 DATA NORMALISATION .. - 11 -

2.3 BCI CHALLENGE NER2015 .. - 11 -

2.4 SEPARABLE CONVOLUTIONS .. - 13 -

2.5 EEGNET ... - 15 -

2.6 MEASURING SUCCESS .. - 16 -

3. METHODOLOGY ... - 19 -

4. SETUP .. - 20 -

4.1 BCI EEGNET ... - 20 -

4.2 ARL EEGMODELS .. - 22 -

5. DATA EXPLORATION ... - 24 -

6. MODEL FITTING .. - 28 -

7. MODEL IMPROVEMENTS .. - 31 -

7.1 HUMAN ERROR .. - 31 -

7.2 CLASS WEIGHTS ... - 32 -

7.3 KERNEL LENGTH ... - 33 -

7.4 BATCH SIZE .. - 34 -

7.5 SUBJECT-WISE CLASSIFICATION .. - 36 -

7.6 BUTTERWORTH FILTER ... - 38 -

7.7 DOWNSAMPLING AND CHANNEL FILTERING .. - 39 -

8. EXPERIMENTATION FRAMEWORK ... - 41 -

8.1 BUILDING THE FRAMEWORK .. - 41 -

8.2 INTERPRETING RESULTS ... - 44 -

9. EXPERIMENTS .. - 45 -

9.1 BATCH SIZE ... - 45 -

9.2 EPOCHS .. - 45 -

 - 5 -

9.3 SAMPLE RATE ... - 46 -

9.4 SHORTER SAMPLE TIME .. - 46 -

9.5 STRATIFY ... - 47 -

9.6 NORMALISATION .. - 47 -

9.7 NUMBER OF FILTERS .. - 48 -

10. RESULTS ... - 49 -

11. CONCLUSION .. - 50 -

12. REFERENCES ... - 51 -

12. APPENDICES ... - 53 -

APPENDIX A: PROJECT COMMUNICATION LOG ... - 53 -

APPENDIX B: ARL MODEL LIBRARY DEPENDENCIES .. - 55 -

APPENDIX C: CROSS-SUBJECT RESULTS ... - 57 -

APPENDIX D: SUBJECT-WISE RESULTS... - 64 -

 - 6 -

1. INTRODUCTION

The end-goal of this project is to apply state-of-the-art technologies and techniques in artificial

intelligence (AI) to successfully analyse and classify the electrical signals generated by the brain as

measured by an electroencephalogram (EEG). Using data measured from several subjects a Rapid

Serial Visual Presentation (RSVP) experiment, a machine learning model was generated and trained

to predict the actions and intents of the subjects using only their brain signals. The model is based

off an existing model developed in 2018 named ‘EEGNet’, a type of convolutional neural network

whose parameters and setup have been tuned specifically to successfully learn brain patterns as

measured by an EEG (Lawhern et al. 2018). Varying based on the dataset used and the type of

EEG experiment being carried out, Lawhern et al. found success rates of 80-90% in classifying

EEG data.

In order to achieve this end-goal, the following goals were established as intermediary steps. First

was gaining an understanding of EEGNet and the underlying technologies and frameworks, such

as convolution neural networks (CNNs). Secondly, my goal was to understand other studies in the

industry relating to the EEGNet and how other techniques perform on the various BCI paradigms.

Thirdly I had to understand the common experimental procedures used in EEG across these

paradigms, and fourth was understanding the specific format of the data I would be working with,

which has already been gathered by my supervisor as part of another paper (Lin et al. 2015). Part

of this fourth step was also to explore various state-of-the-art techniques which might find success

performing classification on that specific dataset. Finally using the EEGNet on the data to achieve

good classification performance would be, as mentioned, the end-goal.

1.1 Electroencephalography

 Human brain cells communicate through different electrical impulses, which scientists have learnt

to record using an EEG. Electroencephalography (EEG) is the study of human brain signals

through the usage of small, metal electrodes attached to the human scalp, capable of detecting the

electrical signals generated by the brain. Since the start of the 20th century scientists have found

EEG to provide a convenient ‘window on the mind’ (Srinivasan 2012), a means of finally gaining

quantifiable insights into the human consciousness. EEG to this day is a vital tool in the medical

world, used for the diagnosis of epilepsy, sleep disorders and brain death (Chernecky & Berger

2013).

 - 7 -

 In an EEG experiment, as many as 256 metal electrodes can be attached to the subject’s scalp.

The amount and the placement of the electrodes varies depending on the experiment or procedure,

and certain experiments might make do with as little as four electrodes. In most cases electrodes

themselves do not make direct contact with the scalp, but a conductive electrode jelly paste bridges

the gap, forming an electrical impedance between electrode and skin. The electrodes are connected

to a computer and the neural oscillations, or brain waves, are recorded. Signals are often depicted

visually on a time-domain graph plotting the relative changes in amplitude of the signals’ voltages

(see Fig. 1 below).

1.2 Artificial Intelligence in the 2010s

The idea of a developing an artificial intelligence based on the design of the human brain (a neural

network) has been around since the early 1940s. The application of such a network on a real-world

problem was performed successfully over fifty years ago, when Bernard Widrow and Marcian Hoff

developed a model which reduced echoing in phone calls (Widrow & Hoff 1959). Through the

early 2000s these models improved with increased computing power, access to graphics processing

units (GPUs) and the usage of a subset of neural networks known as convolutional neural networks

(CNNs). The CNN, due to its ability to generalise, found its way to success and fame as the AI

model which could finally perform image recognition tasks (e.g., reading handwritten numbers and

recognising human faces) at super-human levels (Ciresan et al. 2011). This would set the basis for

what has been called for what has been called the third boom of AI, after the field endured two

‘winters’ in the late 1900s (Lloyd 1995). Today AI is used for everything from computer games to

Fig. 1 - The signals from EEG an experiment run by the German University of Bonn

 - 8 -

facial recognition and medical breakthroughs including fighting the spread of the coronavirus

(Broad 2020).

1.3 The Modern Brain-Computer Interface

A brain-computer interface (BCI) is a new means of building a bridge between the human brain

and the world of computers. Most of us are aware of the typical human-computer interfaces which

gained prevalence in the back half of the 20th century, those being the computer mouses and

keyboards. These so-called interfaces are crucial to the modern world and provide, for most of us,

an easy way of relating our thoughts and intents to a computer, but what about those of us without

the physical capability to use such interfaces? A BCI can enable human to computer-interactions

by monitoring a user’s brain waves, potentially reducing the requirement for such physical devices

as the mouse and keyboard. It provides a new channel of output for the brain connected directly

to the computer, and as alluded to has clear potential use cases for helping disabled people.

Particularly, BCIs are finding their places in usages for the rehabilitation of sensory and motor

disabilities, exoskeletons and neurocommunication (Vallabhaneni 2005).

BCIs in more modern history have been looked at as a way not just in which to aid disabled people,

but to enable a more seamless computer interaction for everybody. The field, with its modern

developments, is regarded as one of the ‘most exciting interdisciplinary areas of science and

technology’ (Pisarchik 2019). One of the most high-profile actors in the field is Elon Musk, who

as CEO of his company Neuralink, strives to use the devices for ‘transhumanism’, the idea of

enhancing the human body and mind to work or function past their natural biological limits. The

ideas and goals of Musk and his company have faced much public criticism, but he’s not the only

one looking to make use of BCIs for human enhancement. For instance, in 2019 a group of

researchers found participants were able to control a quadcopter using a BCI (Duan 2019). The

interface correctly interpreted the users’ intent with an accuracy of 86.5%. Another study as

recently as 2020 found success enabling subjects to control home appliances with a BCI at a

success rate of 92.8%. The application is pitched as a part of a potential ‘smart home’, enabling

autonomy for elderly people within their homes (Park 2020). Clearly the field is wide open for new

innovations.

 - 9 -

1.4 EEGNet

In their seminal 2018 paper, Lawhern et al. proposed a CNN built specifically with the goal of

learning and predicting those neural oscillations measured by an EEG. The model, dubbed the

EEGNet, stitches together the scientific developments over the past several decades in artificial

intelligence and BCIs and applies them to the EEG field. EEGNet enables other researchers in

their own developments and applications of BCIs by providing a proven model which performs

well across four different BCI paradigms and does so without requiring especially large amounts

of training data. In each of the paradigms the model demonstrates classification performance at

the level of or better than that of current state-of-the-art classification techniques. The paper offers

also a way to graphically visualise the features learned by a trained neural network and an actual

example of how anyone can write the code for their own EEGNet model. The EEGNet is the

model which has been researched and applied in this project to the BCI paradigm of RSVP.

 - 10 -

2. LITERATURE REVIEW

 The following literature review is a brief summary of the reading undertaken as part of this project.

Without understanding the theory it would have been impossible to analyse, optimise and improve

the model at the heart of this project, and it is the readings and learnings which proved most crucial

which are written up below.

2.1 The xDAWN Algorithm

The successful monitoring of neural signals using a BCI is complicated by the fact that brain is

itself complicated and highly multi-dimensional. The brain works constantly and is never working

on just one thing at a time. As such, attempting to listen to the signals generated by just one human

intent or emotion is near impossible. EEG data comes from reading on the outside of the human

scalp, meaning that signals of the over-ten billion currents generated between cells are

simultaneously detected by each individual electrode. Attempts to interpret the raw signals are

analogous to dangling a microphone over the roof of a sports stadium to hear a conversation

between two football players. The observer will likely know when a team has scored by the cheers,

but interpreting any more than that could be a fruitless task (Jensen et al. 2015). Fortunately this

is where the xDAWN algorithm can help.

From their paper 2009 paper, Rivet et al. propose the model for a spatial filter which can work to

increase the signal-to-noise ratio of raw EEG data. The model gets its name from the underlying

model as depicted in Fig. 2 below. In this model, D is a matrix representing the time between when

a subject is shown a stimulus and when the brain shows a measurable response for each stimulus

(the stimulus onset), A’ is the actual response after its dimensions have been reduced

mathematically, W is the response’s distribution over the various sensors/electrodes and N

represents the input noise. In their paper the researchers compared how five models could classify

EEG data, each using a different (or no) spatial filter on the data. Among the five tested methods,

xDAWN achieved by far the best results. After only five ‘repetitions’ (the same stimulus shown to

a target five times), the classifier with xDAWN filtering scored 80%, compared to the 2nd-best

filter’s score of just 71%.

 - 11 -

2.2 Data Normalisation

In the machine learning world there are various types of data normalisation, which provide

methods by which practitioners can smoothen or polish their data in a way that makes it easier for

a machine learning model to ‘learn’ the data. The typical normalisation is Z Normalisation, also

known as Standardisation, which is a transformation of the data in such a way that the new data’s

mean is zero and its standard deviation one. Another common normalisation method is the ‘min-

max’, wherein all data points are fitted such that the minimum data point has a value of 0 and the

maximum a value of 1. Finally, two common techniques used in machine learning are L1 and L2

normalisation. L2 normalisation, also known as the least squares algorithm, scales the input data

such that the standard deviation is reduced and when the values of the squares of each item in a

row are added together, the result is one. L1 normalisation, also known as a least absolute

deviations regression, is similar but for the fact that the squares of each value don’t add to one.

Rather, a sum of the values themselves adds to one. For the L2 algorithm, data which strays far

from the mean (outlier data points) has a great effect on the calculations, as the proportionate

value of each item is squared. This makes L1 the more resilient algorithm, as it is not so impacted

by the presence of outliers. L2, on the other hand, is more ‘stable’, meaning that in changing

conditions (as the data changes and the same model is applied), the effective change in outcome

will be minimised. Each algorithm clearly comes with its own benefits and drawbacks.

2.3 BCI Challenge NER2015

As part of the IEEE Neural Engineering Conference of 2015 (NER2015), a challenge was put out

to the world in the form of a Kaggle tournament. Kaggle is a world-renowned company whose

community host data analysis and machine learning challenges, competitions and discussions. The

challenge went as follows. Twenty-six study participants were presented with a screen and a short

word (see Fig. 3 below), before being presented with individual letters one-by-one. In most cases,

the letters would spell out the word the users had previously been shown, however in some cases

Fig. 2 - The xDAWN model

 - 12 -

the letter would not match. It was a ‘spelling error’ and served to trigger the ‘oddball’ effect on the

human brain. The brain produces certain recognisable patterns in its brain waves when presented

with an oddball – a stimulus which differs to the expected or regular input the brain was expecting.

The goal of the challenge was to determine whether the letters on the screen correctly spelt out

the word, given only the participants’ brain waves. The idea is that participants’ neural signals differ

so much when presented with an oddball that a model should be able to learn to recognise these

signals and, when presented with new data, determine when the subject was in fact presented with

an oddball.

Fig. 3 - NER2015 Kaggle Challenge Spelling Test

Fig. 4 - The oddball spike

 - 13 -

The winners of the challenge were able to successfully predict whether a word was or wasn’t spelt

correctly at a rate of 85.1% with the following methodology as outlined in their GitHub project

(Barachant et al. 2015). Firstly, four steps of data processing are executed. To start, for both the

‘correct’ spelling class and the ‘error’ class, xDAWN spatial filters are estimated as discussed in

section 2.1 and applied to the raw data. Next, because the data was recorded using 56 electrodes,

a channel selection process was applied by determining the Riemannian distance (see Barachant et

al. 2011) between the mean of the covariances of each class (correct and error). EEG data can be

so noisy that too many data channels (each electrode provides one channel) can actually be a

detriment to a model’s success. In the third step, covariance matrices of each class are projected

into the tangent space (see Barachant et al. 2013), and in the final step of processing, the data is

normalised using the L1 normalisation process previously described. Now that data processing is

complete, a model is trained using the elastic-net algorithm. Elastic-net is a type of ‘regularised’

logistic regression, a type of logistic regression wherein overfitting of the model is reduced through

usage of L1 and L2 normalisation during training. Elastic-net was chosen because it has a track-

record of success on high dimensional data. To-date, the processing and classifying process

followed by Barachant et al. appeared to provide a blueprint for the greatest found success in

analysing and predicting EEG signals. All processes and code used by the team were published

freely on GitHub for anyone in the world to recreate.

2.4 Separable Convolutions

The idea of a convolutional neural network has mostly been used for image classification tasks.

The convolutional layer which gives the network its name performs a ‘convolution’ operation on

the input, which involves the application of a filter to the input data (see Fig. 5 below). A spatially

separable convolution is a simple iteration on this idea, wherein one filter is split into two, and

each of the two new filters are one-at-a-time applied to the data. The technique can reduce the

amount of computational complexity involved in a convolution by reducing the number of

multiplication operations required between data and filter, however obviously this is only possible

if the filter was in fact mathematically able to be divided into two. Oftentimes this is not the case.

Another type of separable convolution, the depthwise separable convolution, is able to work with

filters than are not so easily ‘split’ into two, and as such the depthwise variant is much more

 - 14 -

commonplace in machine learning than the spatially separable convolution. The depthwise

separable convolution deals with not two but three dimensions of data. For image classifiers the

third dimension is the colour of the image; there are three channels in the third dimension – red,

blue and green.

The depthwise separable convolution also splits the filter into two, however they are two entirely

different convolutions themselves; one depthwise and one pointwise convolution. The depthwise

convolution applies a filter to each layer of the data separately. Convolutions are not fully

connected, which is of benefit with EEG data because this lets us use separate convolutions to

learn separate spatial filters, which in turn enables us to learn frequency-specific spatial filters

(Lawhern et al. 2018). Secondly the pointwise convolution, in contrast to the depthwise, iterates

on a single point of data but throughout all channels, or the entire depth of the data. As many of

these filters as required are applied such that one applies to every data-point, but again the

important part is that this convolution will apply to the entire depth of the data at hand. These

two depthwise and pointwise convolutions have iterated over the entire dataset as would a regular

convolution, but with reduced computational complexity and most importantly, the process

reduces the number of parameters in a convolution. Not every data science project would want to

reduce its number of parameters, but in certain cases this can be hugely desirable.

Fig. 5 - Convolution performed on an image

 - 15 -

2.5 EEGNet

The EEGNet paper published in 2018 led the way when it came to using AI in the field of EEG

in a way that generalised across multiple BCI paradigms, did not require huge amounts of training

data and saw highly successful results. Titled ‘EEGNet: A Compact Convlutional Neural Network for

EEG-based Brain-Computer Interfaces’, it was the generalising across different paradigms which made

the paper especially stand out. Before EEGNet, what was regarded as the best model for ERP

modelling was the process undertaken in section 2.3 on NER2015. The elastic-net model uses a

logistic regression algorithm using the logistic regression equation, which is relatively simple to

implement and understand. The EEGNet is a multi-layer artificial neural network which is

generally more suited for high dimensionality problems than logistic regression and is better able

to analyse and determine more complex inter-variable relationships.

The project previously discussed from NER2015 described just what it took to get good EEG

analysis results up until the EEGNet. As described, there were four quite highly complicated steps

in processing the data before the logistic regression model was trained. These steps, at least, are

highly documented and relatively easy to follow, but they apply to just one of several BCI

paradigms – ERP. For the various other paradigms, of which in future there will only be more,

similarly complex but different processing procedures must be carried out to find a good result.

EEGNet provides a solution using deep learning to alleviate the need to find, understand and

follow such procedures for each paradigm with a robust model agnostic to any one BCI paradigm.

Fig. 6 - Internals of the EEGNet

 - 16 -

The neural network applies the concepts behind the rapid rise in successful image classifiers in the

early 2010s (as discussed in section 1.2), primarily the CNN with Depthwise and Separable

convolutions. Such concepts are now commonplace in the deep learning image-classifying realm

but had not previously been widely applied to EEG data.

The EEGNet architecture is comprised of two blocks followed by a third classification block. The

first block is made up of a standard 2D convolution set to a length of half of the data’s sampling

rate, which the researchers found worked to work well in practise. The second part of the first

block was is the depthwise convolution which learns a spatial filter. As noted, the depthwise

convolution reduces the number of trainable parameters, and in this case, it enables us to learn

separate filters for different recorded frequencies. In the second block, a depthwise separable

convolution is used, the depthwise part of which learns patterns at different ‘time-scales’

independently, and then the pointwise part of which combines the learning of those separate

feature maps. Finally, the softmax classifier takes the previous convolutions and outputs

probabilities for each of the dataset’s classes, which become the model’s predictions. The

researchers used their model on many datasets, but one of those in the ERP paradigm was

relatively similar to the dataset used in this project. In their experiment, subjects were presented

with a series of images, 20% containing vehicles or people and 80% containing neither. The task

of the subjects was to press a button when shown an image containing a vehicle or a person.

Obviously, all subjects were connected to a BCI for the experiment, and the recorded data was

subsequently downsampled from 512 to 128Hz and filtered to contain only frequencies from 1-

40Hz.

2.6 Measuring Success

There is no one golden metric with which one can measure the level of success of an AI model.

Rather there are several, each of which bring their own pros and cons and are better suited to

different projects. One metric which is most prominent in published studies is accuracy

(Handelman et al. 2019). The accuracy of a model’s predictions is simply the percentage of data

points which have been correctly classified out of the entire dataset. Oftentimes accuracy is in fact

a useful metric, and perhaps the best for a given project, however it comes with its flaws. The

paper by Handelman et al. provides an example of the classic counterargument to usage of

accuracy, an anecdote from an application of AI to the medical field. In their example the model

is trained to identify blockages of the lungs, a rare medical issue presented in around 10% of

subjects getting a scan done. The model successfully predicts the presence of blockages in test

 - 17 -

participants’ lungs with an accuracy of 90%, but all the model does is predict every patient to in

fact be free of the blockages. All healthy patients were correctly cleared of medical issues, and all

unhealthy patients were falsely advised their lungs were clear from blockage. Oftentimes, the paper

writes, accuracy is not a helpful metric.

A common method for avoiding the above issue is the usage of a receiver operating characteristic

(ROC) curve (see Fig. 7 above). The RUC plots the relationship that a model’s sensitivity has on

its specificity. Sensitivity, or recall, measures the ability of an algorithm to correctly predict the

actual positive cases (true positives). More strictly, it is the number of true positives divided by the

sum of the true positives and false negatives, and is also known as the true-positive rate. In the

prior example, sensitivity is 0 because none of the positive cases (patients with blockages) were

correctly identified. The specificity of a model is the opposite; that is, it’s the number of true

negative predictions divided by the sum of the true negatives and false positives, and is also known

as the false-positive rate. The model from the previous example had a specificity of 100; that is, it

correctly predicted every negative case and didn’t make any false positive predictions. Evidentially

sensitivity and specificity play off of each other; generally as one rises the other will drop, and for

most models some kind of balancing of the two measures is required. In the RUC curve both

Fig. 7 - An example ROC curve with the AUC highlighted

 - 18 -

sensitivity and specificity are measured, making the Area Under the Curve (AUC) a common

means for evaluating the success of a good model. One perk of AUC is that it is agnostic to the

classification threshold of a model. That threshold determines what probabilities turn into what

predictions; a threshold of 0.5 would mean any input predicted to have a 50% or greater chance

of being a positive is in fact predicted as a positive. The perk can, however, be a downside and

take away from UAC as a helpful metric, because sometimes the costs of false positives and false

negatives are not the same and that threshold should actually be much different. In the medical

example, a false positive means a healthy patient will be falsely classified as suffering from one of

the lung blockages and undergo further testing (not the worst thing). A false negative tells an

unhealthy subject that they are in fact healthy and should not worry about such blockages (the

worst thing). Clearly the cost of false negatives in this example is higher, and as such sensitivity

would be more important than specificity. An ROC can be a great tool for choosing a threshold

and it provides the researcher with the means by which to choose the classification threshold which

makes sense for their own project.

 - 19 -

3. METHODOLOGY

In brief, the following is my intended methodology, describing what I should do to end up with a

successful project. It should be noted that before any of this methodology could be performed,

copious amounts of research on the AI concepts, EEG concepts and the applications of AI on

EEGs was necessary. As stated, this project’s objective was to learn and apply state of the art

techniques in machine learning to EEG data with the goals of better understanding the processes

for myself and developing a model capable of learning and classifying the data. Before starting

development of this model, a fair amount of work is required just in order to have the right working

development environment to be able to start exploring and understanding these processes. In this

step it would be great to successfully run a model using data found online and get good results

classifying EEG signals. The next step would be to get access to my supervisor’s data, perform

data exploration and analysis, and really understand both the data itself and exactly what

experimental procedures were executed in its gathering. The next step would be going back to the

model from the setup and doing everything required to apply it to the data. This would mean

refactoring parts of the model to suit the shape of the new data, and getting it working on that

new data (working meaning it could output a result, but not necessarily a good one). The final step

of the methodology is the fine-tuning of the model and exploration of tweaks and modifications

which would help the model to get the best classification results possible. The last step was

anticipated to be the biggest and most cumbersome.

 - 20 -

4. SETUP

4.1 BCI EEGNet

The first milestone was to get a working development environment wherein I could train a neural

network on data from a Kaggle competition and recreate the results achieved by those participants

of the contest. The model I would be implementing was that used in this GitHub repository -

https://github.com/cbhanu/BCI_EEGNet - a model developed for a Kaggle challenge which

used the previously described spelling challenge. The repository was a great starting point, however

it wouldn’t prove a silver bullet solution to getting a model up-and-running easily. Unfortunately

the code was already outdated by the time I started looking at it, having been written in March of

2018. Obviously, things move fast in the software world, and new versions of libraries are always

being published. Normally this would not be too much of an issue, so long as the writers of the

repository provide the exact versions of every library they used when the code was working

correctly. The authors of this repository were focused on the Kaggle competition and uploaded

their code afterwards but failed to list which versions of what libraries they had used. They did

provide some instructions on using their model, but by the time I got my hands on it the code

wouldn’t actually even compile. It took many hours of research and trial-and-error of mixing and

matching different library versions (the authors had used over twenty external libraries) before I

finally had something that would compile. Once the program was compiling, I gathered the dataset

the authors had used from the Kaggle competition with the goal of recreating the processes and

success they had found. At first the program wouldn’t run on the data provided; the data format

the model was expecting didn’t match the data I had gathered. After confirming I had the same

data which the authors had used, I set to work debugging the program and eventually found the

inconsistencies. Presumably some of the code the authors had used on the Kaggle dataset had not

been updated in the repository, but with changes in two lines finally I was able to run the program.

Running the program on my old 2012 MacBook Pro seemed an impossible task. Training the

model with just ten epochs took over forty minutes. As mentioned above, part of the huge increase

in AI performance in the last decade came from the usage of increasingly powerful GPUs. My

laptop had none. Fortunately, three years prior I had built a desktop PC which had much better

specifications than my laptop, including its own GPU. Transferring the development environment

to the desktop, I found the time required to run ten epochs of the program cut down by 60% to

sixteen minutes. It was a huge improvement but still probably not good enough to get the kind of

 - 21 -

quick feedback required to develop, train and improve a model. With the ten epochs, the model

classified the two classes of data with an accuracy of just 30%. This result was not surprising

considering the number of epochs. In a change of strategy, I opted to run the program overnight,

this time for 300 epochs. I calculated this would take my machine eight hours, given the ten epochs

took just over sixteen. Although I turned the ‘sleep’ mode off of my computer such that it would

stay awake all night, a separate power saving mode kicked in two hours into the learning process,

and as such after eight hours only 170 epochs had completed. I changed this setting and carried

out the experiment again the next night and finally the model had completed its training and testing

process. Using 50% of the data to train, 25% to validate its trainings, and 25% to test the model

after the training process, the model achieved an accuracy of 68.3% and AUC of 61.6%. It was

slow and not very accurate, but the model was classifying data at a rate better than a random guess.

Clearly it was learning something, and I was on the right track. Unfortunately, with eight hours

required just to run one experiment, it was going to take a very long time to make any kind of

optimisations and fine-tuning of the model. That’s not to mention the power costs and computer

wear that come with leaving the machine working at 100% capacity every night for eight hours at

a time.

At this time through communication with my supervisor I was advised of UTS’ own High Powered

Computing (HPC) facility which provides staff and researchers with complimentary access to over

forty high-powered computers online all of the time. Having already gained experience using the

command line through a few years of work experience, the idea of being able to remotely connect

via the command line to a high powered computer in lieu of using my own was highly appealing.

Once I was granted access to the system by the administrators, I saw immediately that the HPC

was a game-changer for me. I could now work on the project from anywhere using only my old

laptop, because the UTS computers were doing all of the hard work and all I had to do was send

a few commands to tell them what to do. It took some time to get the environment working again,

more so than when I had moved to the desktop because this time it was a totally new system I was

working with and I had to learn what the HPC had pre-installed for users. Other problems were

how to get the program and data I had been using onto the HPC system, and how to get it to

persist there so that I wouldn’t have to get it there again every time I reconnected to the system.

Fortunately UTS’ own documentation is quite extensive and eventually I found instructions on

how to do just that. I used the Secure File Transfer Protocol (SFTP) to send my program and data

over to the UTS computers, stored it in my own persisted storage directory there and was able to

run the model there. Finally, the model’s training-and-classifying process which had taken all night

- eight hours - was reduced in time by 97% down to just twelve minutes. The benefits of such a

 - 22 -

reduction in time are hard to understate. With that improvement I would be able to run the entire

process multiple times per hour, allowing for quick experimentation with the model’s parameters.

It opened up the possibility to use an even high number of epochs, smaller batch size or training

on bigger datasets, all of which would increase the amount of time taken for the model to train

itself.

4.2 ARL EEGModels

I had shown I could perform the machine learning process in my own environment using the HPC

to ensure the process didn’t take too long and had trained a model on real EEG data showing the

model improved with time (i.e., it was really learning). The issue was that part of my goal in the

setup was to recreate the results achieved by the authors of the project in their

Kaggle competition. Unfortunately, I soon realised, the authors had not actually listed their results

as part of their repository, and looking through the competition leaderboard I struggled to find

any entrants whose names matched those of the repository authors. Surely their results were better

than my 68% accuracy, but how much better I did not know. That was when my supervisor

pointed me to another repository developed by American Army Research Laboratory (ARL)

(https://github.com/vlawhern/arl-eegmodels).

Finding the repository was like striking gold. Every external library the authors had used was

documented alongside the exact versions they had used. The repository provided a relatively

extensive documentation on how to use their code. Two of the stated goals of their project were

to ‘facilitate reproducible research’ and to ‘enable other researchers to use… these models… on

their data’. The repository, from my experience, did exactly that. Using a real EEG dataset as the

sample, the repository provides instructions on how to achieve a good result in classifying the data

and also notes exactly the results the authors were able to achieve on the data (93%). The code is

also heavily commented with notes and general documentation to assist the reader. Using their

model and sample data, I was able to run the training process in around ten minutes (similar to the

other project) and recreate the results of 93% accuracy see Fig. 8 below). The primary tools and

libraries used were Python3, Keras and Tensorflow, but for a full list of the dependencies I used

to get the ARL working see Appendix B. Having recreated the result of the authors, I had achieved

my goal and as such the setup phase of the project was complete.

 - 23 -

Fig. 8 - Confusion matrix of results on sample data

 - 24 -

5. DATA EXPLORATION

Finally, at this point I was ready to being working with my supervisor’s data. The dataset was used

in 2015 in one of his papers (Lin et al. 2015) titled ‘Extracting patterns of single-trial EEG using an

adaptive learning algorithm’. The research paper studies the rapid serial visual presentation (RSVP)

paradigm, wherein participants are presented with rapid sequences of images including one ‘target’

image. In the experiment at hand, subjects were presented with series’ of letters on a screen, each

letter being presented for a duration of 200 milliseconds, i.e. five letters per second (see Fig. 9).

Roughly 5% (one in twenty) of the letters presented were designated a ‘target’, and the subjects’

task was to, upon recognising a target, press a button. The recognition of the target image triggers

an oddball response in the brain as described previously, and the action of moving the finger to

press a button fires even more neural signals.

Fig. 9 - A visual representation of the experiment by Lin et al. showing letter 'G' as a target

The six study participants were fitted with an EEG cap composed of 32 electrodes to be placed

over the skull. Each subject participated in either three or four sessions, each of which consisted

of 80 target letters and over 1200 non-targets. Thus, in total the dataset consists of 19,215 trials,

each labelled as either a target or non-target event, and the job of the prediction model is to classify

signals into one of these two classes. The data distribution is represented below in Fig. 10. The

most striking attribute is the class imbalance, a consequence of the ~20 non-target letters presented

to subjects between their being shown a target. It stands in contrast to the data on which the model

scored a 93% accuracy rate, which is presented below in Fig. 11. The four classes of that dataset

are split almost exactly into four even chunks of 25%.

 - 25 -

Fig. 10 - Data distribution between target (class 1) and non-target (class 2)

Fig. 11 - ARL sample data distribution

 - 26 -

Immediately it’s obvious that the RSVP dataset (that of my supervisor) is far more fleshed out

than the example found in the ARL code. Its trial count alone of 19,215 puts it far above and

beyond that of the sample data’s count of 288. Even if the RSVP data was balanced like the sample

one by trimming non-target data from the dataset, the dataset would still contain 2392 trials (1192

each of target and non-target). The other obvious difference is that the sample has four classes.

That’s because in the sample dataset the study participants were being subject to a stimulus to their

left ear, right ear, left eye or right eye, hence the four classes. The RSVP dataset is simpler in that

there are only two classes to learn: target and non-target. The final major difference in datasets I’ve

observed was actually the paradigm which was being explored with the EEG. While my

supervisor’s data, as mentioned, works in the RSVP paradigm, the sample data was in the paradigm

of Event Related Fields (ERF).

The RSVP dataset, as mentioned, displayed each image for a total of just 200 milliseconds before

moving onto another image. The oddball paradigm as described before famously triggers what’s

known as the P300 response, its name coming from the fact that an obvious disruption occurs in

subjects’ brain signals not at the time of sensing an oddball, but around 300 milliseconds after the

fact. In this RSVP dataset each image is shown for only 200 milliseconds, so to get a good reading

of the effect that seeing a target image and pressing a button had on subjects, clearly we would

have to look past the end of the time the target was shown by at least 100 milliseconds, such that

at least 300 milliseconds had passed since the subject first registered the presence of a target. In

fact, fortunately for me, the dataset had already undergone some heavy pre-processing to take all

of this into account. As it was provided to me, the dataset was composed of the 19,215 trials

previously mentioned. I had at first assumed each trial’s datapoints to include only the 200

milliseconds measured while the subject was looking at a particular image. With the BCI measuring

data at a rate of 256Hz, this would leave me with 51 datapoints per trial, or 51 ‘samples. In fact,

this was not the case. Exploring the data, I had 231 samples per trial. The data had already been

processed such that the data for each trial started 100 milliseconds before the image was shown

up until 800 milliseconds after the fact. Thus, I had 900 milliseconds of data per trial, which with

the sampling rate of 256Hz left me with the 231 samples.

Another presumption I made was in thinking that, even though the data had already clearly been

processed in a beneficial way, the ordering of the trials would represent the ordering from the real

experiment. That is to say, the data would consist primarily of non-target classes with sporadic

target classes roughly every twenty trials. In fact, as I will discuss later on, this presumption would

go on to burn me in the attempt of fitting a model to this data, because the presumption was not

correct. For every session, comprising around 1300 trials, all eighty of the target classes were right

 - 27 -

at the end. That is to say, each group of session data consisted of around 1200 trials of non-targets

followed by 80 targets. This was a very important discovery in the process of getting to a good

result using the EEGNet.

In section 2.3 on how the winners of the competition from NER2015 came to their winning model

I wrote of the issues that can come with analysing and learning EEG data when the data is recorded

with a high number of electrodes. The recordings can just be too noisy to properly learn, and the

extra noise can make generalising across subjects near impossible. A model trained on one subject

might anyway have a hard time classifying signals from a different subject, and that is only truer

when a high number of channels is used. With more channels, it’s more likely that the model could

come to learn patterns which are specific to that specific subject, and as such the model will be

‘overfitted’. In this case the number of electrodes used was 32, so that’s the number of data

channels in the dataset. In their entry for the NER2015 contest the authors of the project I

reviewed reduced the number of channels in their data from fifty-six using a selection process

based on the Riemannian distance algorithm. In this case, I started off using all channels in case

the result was good, with the decision to consult later with my supervisor if the results weren’t

good about any advice he might have for choosing channels which would get the best result.

 - 28 -

6. MODEL FITTING

At this point it was time to use the RSVP data and fit the EEGNet implementation from the ARL

to that dataset. Compared to working with the initial 2018 repository (BCI_EEGNet) the process

was rather simple and straightforward. The code and data were transferred onto the UTS HPC

system using SFTP ready to go. I had to get the data ready to go in the format that the ARL model

wanted it. The data had 19,215 samples, 32 channels and 231 samples per trial, in a data shape of

[32, 231, 19,215] whereas the ARL model wanted it in a shape of [trials, kernels, channels, samples].

The only real work to do to get the model actually running with the data was reshaping the data

into this format. Previously the shapes of the data were hard-coded based on the sample data the

authors had used. Instead of changing these figures to match the data I had, I refactored the code

such that the dimensions (channels, trials, samples) were calculated dynamically based off of the

input data (see Fig. 12). Later on, once I started experimenting with changing the data shape, this

saved what would have been a lot of time changing the hard-coded values every time.

The model then was ready to run with the RSVP data. On the HPC system I was just using the

command line rather than the graphical user interface (GUI) so all of these code changes I actually

made on my own computer using an integrated development environment (IDE). I experimented

with using a Jupyter Notebook as is the norm in machine learning. The notebook is handy in that

it presents a very user-friendly way to run Python scripts in little chunks and with repeatability.

For me, I am very comfortable with IDEs and wanted a way to do my development in one, save

every modification with version control, and then run it on the HPC. It was crucial that I could

do all of this quickly; make a change, save it and run the code. Therefore, at this point I turned my

modifications of the ARL code into a GitHub repository (https://github.com/WillSmithTE/arl-

eegmodels). The benefits of this approach were that I could do all development on my own

machine using the setup I am comfortable with. Then once I was ready to run the code, I could

Fig. 12 - Modifying the ARL code to dynamically determine the paramters of the data's shape

 - 29 -

simply ‘save’ it by making a commit, push it to my repository, pull the changes on the HPC and

run the code. The process of saving it on my computer and getting it on the HPC took only ~15

seconds and let me track every change I made. It created a clear history and log of every change I

made and let me have the freedom to change the code however I wanted always knowing

everything was saved and I could get back to a previous state at any moment. The setup also meant

my project lived online, and as such I wasn’t limited to just one computer which proved handy

when I did in fact have to switch between computers due to hardware failure on one. The GitHub

repository also served as a backup, giving me the confidence that at no point could I lose my

progress.

Running the model with exactly the same parameters as were used on the sample ERF data was

my first attempt at learning the RSVP data. The accuracy on the ERF was high and, even though

the data was very different, I thought it would be a good place to start. I had again split the data

into 50%/25%/25% sections for training, validating and testing respectively, using all subjects

together (known as cross-subject validation). Although cross-subject validation is often seen as

more difficult, in this case it would allow me to use all over-nineteen-thousand trials and would

anyway serve as a starting point for making sure the setup of the model and the development

environment were correct. With so much data, a batch size of just sixteen and 300 epochs the

training process took around twenty minutes on the HPC. The accuracy of the model from the

first run was 92.9% which seems fantastic, however the confusion matrix in Fig. 13 tells the

underlying story.

Fig. 13 - Confusion matrix from first run of EEGNet on RSVP data

 - 30 -

In the confusion matrix class 1 is the target and class 2 is the non-target. I would later switch these

numbers to be in line with common practise, but the important takeaway from the confusion

matrix is that ‘true positives’ in the top left, wherein the target class was correctly predicted, made

up just 6% of the total positive results. All 94% of the other target classes were predicted as non-

targets. In raw numbers, just 18/288 target classes were predicted successfully. The overall

accuracy of 92.9% masked the fact that the target class was predicted successfully at an accuracy

of just 6%. Clearly, and as expected, plugging the new data into the ARL model with the same

parameters would not prove a magic formula for learning the RSVP data, however running the

model on the RSVP was a success.

 - 31 -

7. MODEL IMPROVEMENTS

7.1 Human Error

Here I have to confess a significant human error I made early in the project which had effects

carrying over right all the way until a week before this report was submitted. It affected the most

important part of what I was spending all of my time on: measuring the successes and failures of

the model in response to changing parameters. When I first started computing the AUC, the ROC

I had calculated from which the AUC score was determined was not quite right, and I only realised

the error when I decided to actually plot the ROC for my own reference.

The ROC, I have already described, plots true positive rate against false positive rate for various

thresholds of predictions. In my code, the threshold I was using for predictions was 0.5, but in

fact unbeknownst to me I was using the same threshold in my ROC. Rather than plotting 200

different thresholds, I plotted just one, resulting in a graph with just three data points (see Fig. 14).

The correct ROC plotted 200 different thresholds to provide an idea about the balance we have

to manage between sensitivity and specificity (see Fig. 15).

I executed about 200 experiments before realising my mistake. As such, the AUC scores for these

200 experiments were lower than they should be. In this report, I decided to continue to use these

Fig. 14 - The incorrect ROC used to calculate the AUCs

 - 32 -

AUC scores to compare the models. As far as the experimenting and tweaking goes, the only goal

is to improve performance, so the error should have minimal impact on the conclusions drawn

from the following experiments. I plan to carry out all experiments as planned and complete them

using the lower, incorrect AUC score. Then I will use the takeaways from the experiments to try

to maximise the real AUC score and use that for my final result. I admit this was a sloppy mistake

from me and acknowledge that the most scientific thing to do would be to restart all

experimentation using the real AUC result.

Fig. 15 - The correct ROC

7.2 Class Weights

Clearly work had to be done to improve the model. The problem ties back to the issue described

back in section 2.6 on the woes of accuracy as a metric. With such an imbalance between target

and non-target classes, the model quickly learns it can score high accuracies simply by predicting

the non-target nearly every time. As the model tries to learn through backpropagation, any progress

on learning patterns which might help with predicting the target classes is nullified because the

accuracy goes down, the loss from the loss function goes up and the model assumes there’s no

further improvement to be made that way. In a way it’s right. As long as the loss function treats

classifying target and non-target datapoints in the same way its methodology is the best one. That’s

 - 33 -

why I had to change how the loss function determined the success of the model’s predictions. By

adding ‘weightings’ to the class, the model would know in learning that despite their making up

only 6% of the data, predicting the targets was just as important as predicting the non-targets. I

added weights equal to the opposite of the distribution of the data dynamically in Python, such

that correctly or incorrectly classifying a target image was fifteen times more influential to the

classifier’s loss than classifying a non-target. See the code in Fig. 16.

Running the model again with the same parameters except for the change in weights, there was a

notable improvement. Running the program four times and averaging the results, the accuracy had

dropped to 81% but reading the confusion matrix showed the model to be better at classifying the

target class than it was before. This is when I came to the conclusion that I needed a proper metric

to determine whether the model was getting better or worse. I had made a tweak which I knew

improved the model, but my only metric (accuracy) told me performance had decreased. If I was

going to be able to continue to perform extensive tweaking and tuning of the model, I had to find

a quantitative way to track progress.

From the research I had done up until this point I thought that a metric which would help as a

good start would be AUC, as discussed in section 2.6. Unlike accuracy, it would actually take into

account the true positive rate and the false positive rate, which would mean the first model

(predicting only non-targets) would not score well, and predicting more successful targets would

score better. I tested it on the two results I had so far and was happy with the result. Both of the

AUC scores were low obviously, but at least the second was better than the first. The first had

scored 52.3 and the other 56.0.

7.3 Kernel Length

At this point I went back to the EEGNet paper and the documentation for the ARL project. My

supervisor’s continual advice was to get familiar with the theory and he was 100% correct. Every

time I went back and re-read the paper or the documentation something new stood out to me that

I had missed. This time it was the ‘kernel length’. What the ARL authors referred to as kernel

Fig. 16 - Calculating weights for each class based on the data distribution

 - 34 -

length was the size of the temporal convolution in the first layer of the CNN. In their example,

and in the code I had used, they had set this kernel length to a value of 64. Upon reading through

their documentation I found this to be because of the sampling rate of the ERF data they were

working with. The data had a sample rate of 128, and the researchers had found best success when

the kernel length was set to exactly half of this figure. I was also using the kernel length of 64,

however I had 231 samples in my dataset. Clearly this was incorrect and against their

recommendation. To avoid repeating the same mistake, I made this value instead dynamically

determined at runtime by the program based on the dataset’s sample rate (see Fig. 17). In my case,

it would be set to 115.

Fig. 17 - Dynamically determining the kernel length based on the sample rate

Again over four runs of the model, I averaged the AUC scores of the predictions with this change.

The score was better (56.8 compared to 56.0) but not by enough to rule out the possibility that the

improvement was nothing more than random luck (obviously each run of the program gets a

different result). The model was still having terrible issues predicting the target classes, despite the

class weightings and this kernel length fix.

7.4 Batch size

At this point I started to fiddle around with the batch size. I was training the model in batches of

16 but for no particular reason. Having re-read the EEGNet paper and ARL documentation, I

found no mention of the batch size there like I had for the kernel length, so figured there was no

particular reason why a batch size of 16 should work for me compared to something else. At first,

I tried the extremes. I tried a stochastic approach with a batch size of one. I was still working with

all subjects’ data from all of their sessions, so for the model to train in batch sizes of one this

training process took a very, very long time so I reduced the number of epochs down to fifty.

Even still the process took over forty minutes, but finally I had a result. The accuracy looked great,

at 94.9%, but the AUC had dropped like a rock down to 50.1 (just about the worst AUC one can

get). Digging into the result, I found the confusion matrix as per Fig. 18. Notably the confusion

matrix here is using the raw values rather than the percentages in the previous confusion matrix.

This was a deliberate choice, as I was finding myself converting the percentages into raw figures

 - 35 -

anyway. From this point on in the project I preferred the matrix showing just the raw values, even

if it doesn’t look as aesthetic as Fig. 12.

One target class had been correctly classified, for a target accuracy of 0.4%, effectively 0%. I tried

to find examples of the stochastic gradient approach in use with CNNs but did not find much, so

I was confidently able to write that approach off. To try the other side of the extreme, I

experimented with a batch gradient descent wherein the batch size makes up the entire dataset. I

anticipated the learning process to be extremely quick here so increased the number of epochs

back to 300 and otherwise kept all parameters the same. The result was an accuracy of 93.2% and

an improved but still unacceptable AUC of 52.0. Finally, I tried a batch size of 80 and got my best

result yet, with an AUC of 57.2 and a true positive rate of 27.6% (Fig. 19).

Seeing this result I decided to do more exploration of the RSVP dataset. Up until this point I had

thought the target classes to be spread evenly throughout the dataset. This is the moment where I

realised they were not. That would explain the terrible results with the targets with a batch size of

16, and I was in fact surprised that using a batch size of 80 even managed to get the AUC result it

did (admittedly it was still not good). With the target classes grouped at the end of each session’s

data, the model was going through hundreds of batches before even seeing the existence of any

Fig. 18 - Stochastic descent's confusion matrix

Fig. 19 - First attempt of batch size 80 resulting in the highest AUC yet

 - 36 -

target classes. As such, the model learnt quickly that it could achieve great accuracy by predicting

only non-targets. When the targets finally entered the fray, they weren’t able to have enough impact

on the model’s loss to drastically change its internal weightings and model. Thus, it would stick to

predicting non-target classes.

7.5 Subject-wise classification

The small tweaks which were having such negligible improvements on performance up until this

point were clearly helping but not in a way big enough that performance was going to get to truly

good or even acceptable levels. Authors of papers I had read were able to achieve AUC scores in

the mid 80s. My supervisor and assistant advised me that it would be wise to try the classification

on just one subject rather than all five together. In deep learning the size of a dataset is often

extremely important, which is why I wanted to combine the data of all subjects initially, but

fortunately they advised me that often cross-subject classification can be more difficult that

subject-wise (one subject) despite the reduced size of the dataset because the brain signals across

subjects can vary so much. In order to switch from all subjects to just one I of course had to make

some changes to the code. I wated to make the changes but in a way that would easily let me switch

back to all subjects, or just subject two, or any other such combination, with minimal work

required. Therefore I created common functions in separate files for different datasets. As such I

did some minor refactoring of the all-subjects code such that from the EEG code, I could simply

call a getDataAndLabels function and get back all of the data I needed (see Fig. 20). This way I could

write the subject one code in a separate file also with a getDataAndLabels function, and easily

between datasets by changing the name of the file imported (i.e., change getDataAndLabels1 to

getDataAndLabels1Subject1. All other code would stay the same.

Fig. 20 - New way of switching between datasets

At first I did the same classification process from before but just on subject one and with a batch

size of 16. Immediately I found the same issues I had faced before with such a low batch size; the

target class was almost never predicted (Fig. 21).

 - 37 -

Fig. 21 - Subject 1 classification with batch size 16

This was to be expected, however switching back to the batch size of 80 I had used for all subjects

got a better result. The AUC went up to 58.1, right around the same score as was found for all

subjects. I knew at this point I was pointlessly collating all of the data together for every run of the

model, when I could just collate it once and save it. For that reason, I wrote a basic ‘save’ and

‘read’ functionality so that I could cache the data and save time on every run (Fig. 20).

One issue identified which could be harming the success of the model was the fact that the target

values were so concentrated together (all 80 put at the end of each session). In an attempt to

remediate that I tried to shuffle all of the data before performing any kind of training or classifying.

For all subjects the shuffling significantly decreased the performance, perhaps due to the fact that

the subjects’ data was now interspersed. The AUC went down to around 50. To the contrary, the

subject-wise classification actually improved the AUC score, so from here on I always shuffled the

data for subject-wise classification for subject-wise data but not when classifying cross-subjects.

Fig. 22 - Helper functions for caching data run-to-run

 - 38 -

7.6 Butterworth Filter

More advice from my professor was to try applying a filter to the data. I had read about usages,

specifically in EEG, where machine learning experts had applied a Butterworth filter to reduce

noise picked up in EEG detection. The technique would be especially useful for the cross-subject

classification, because it would help to block out those signals unrelated to the experiment at hand

and which would otherwise cause the model to overfit on the training data and potentially learn

the signals of specific subjects. Obviously learning the signals of specific subjects would be useful

in subject-wise classification, but it would make the model incapable at generalising across subjects.

I later found a great implementation by an external library for the filter in Python, but the first few

implementations I found were highly tailed to the individual dataset they were working on, so at

first I wrote one instead in MATLAB (see Fig. 23). The program would take in my dataset, apply

the filter between frequencies of 0.5 and 30Hz, and save the result to a MATLAB file. I could then

take that MATLAB file and use it as the input for my data.

Fig. 23 - MATLAB Butterworth Filter

 - 39 -

The filter seemed to have some success. Over four experiments, the AUC score hit 60 for the first

time. My supervisor advised I could make the filtering even tighter, at a range of 0.5-20Hz now.

The tweak also had immediate results, with an AUC score of 60.9. I tried the same filter on data

from all subjects and had, again, the highest AUC score yet of 64.0, with an accuracy of 82.4%.

Fig. 24 below displays a graph of the loss throughout the training process to achieve this result.

Visibly, the loss varies greatly throughout the 300 epochs, which is a part of the reason why the

model has so much variability in its results run-to-run.

7.7 Downsampling and channel filtering

What came next were two improvements which helped the performance of the model hugely. I

knew about the effects that too many channels can have on the model’s performance as I had read

about them before, and I found another EEG project wherein they selected 19 out of the 64

electrodes used, using only these 19 for the classification. In the RSVP experiment, 16 of those 19

electrodes were used so I tried filtering my data such that only these 16 channels of data were

included. Again the results were good, with a small increase in the AUC score. I thought about

determining optimal channel selection using the Riemannian distance as discussed previously, but

just as I was looking into it my supervisor advised me of six channels he thought would likely

contain the most relevant and least noisy signals. These were:

Fig. 24 - All subjects filtered loss graph

 - 40 -

• Pz

• P7

• P8

• Oz

• O1

• O2

Before trying the Riemannian distance calculation, I tried using manual selection with these

suggested channels and my professor was right. The results were even better.

One of the final significant improvements I saw in the AUC score was made by downsampling

the data. Reading through the EEGNet paper I saw multiple references to an ideal sampling rate

of 128Hz. Using the rule of the ARL repository, this would put the length of the first convolution

at 64 (half of the sample rate), making up 500 milliseconds of recorded data. The more I read the

more it seemed that the other parameters (especially the numbers of filters/convolutions chosen)

all related to this 128 or 64. Because the RSVP data was 900 milliseconds of data sampled at 256Hz,

I had the uneven number of samples of 231.

I decided to try downsampling the data to 128 data points. I could have altered the number and

size of filters the model was using but figured that would leave more room for error than

downsampling, acknowledging that by downsampling from 231 to 128 I was losing a lot of

information (nearly half of the data). The downsampling proved to improve the AUC yet again to

just below 70 and, on some runs, just over 70. For the downsampling procedure I used a popular

Python library called ‘scipy’ which provides a module for working with data signals (see Fig. 25).

Fig. 25 - Data downsampling code extract

 - 41 -

8. EXPERIMENTATION FRAMEWORK

8.1 Building the framework

At this point between tinkering with the batch size, the number of epochs and whether or not data

was filtered, I was spending a lot of time setting up and then monitoring these ‘experiments’. The

whole goal was to maximise the UAC by experimenting with various parameters, so I wanted to

find a better way of running more experiments for a longer period of time. It was too time-

consuming to wait the ~10 minutes for one to finish, manually record the AUC and accuracy (as

I did in the above screenshots), and then run another one. The problem was even more

pronounced because I needed to run each experiment multiple times, usually four, just because

the results varied so much run-to-run and I wanted to flatten out some of the variability.

Once it was complete, Fig. 26 shows the experimentation framework in practise with configured

variable batch sizes. I had been running so-called experiments up until this point (in fact, I had run

over 100 of them), but from this point I strove to formalise the process. I explicitly stated my

hypothesis, ran the experiment which would keep all variables constant except for that being

Fig. 26 - Using the experimentation framework

 - 42 -

tested, saved the results, and compared them with a table or graph. The constructor of the

ERPExperiment class simply got the data and put it on the class, as per Fig. 27.

For actually performing the experiments, the method trainAndPredict trains the model with the

given parameters and executes the full classification process. The parameters available for

experimentation are as follows:

• epochs – number of epochs to run

• batchSize – the size of the batches to run

• class_weights – the weightings to attach to each predicted class, as discussed

• F1 – the number of temporal filters to learn on the model

• D – the number of spatial filters to learn within each temporal filter

• kernLength – the size of the temporal convolution in the first layer

• dropoutRate – the percentage of datapoints not included in the training process

• learningRate – the rate at which the model adjusts itself during training

Fig. 27 - ERPExperiment Constructor

 - 43 -

I provided all parameters with default values as per Fig. 28.

Finally I had the framework I wanted and could run experiments much more easily. In the final

step, I wrapped the above trainAndPredict in a multiTrainAndPredict which was a method with the

same definition except for an additional numberExperiments property which defined how many times

the experiment should run. In this way, for flattening the run-to-run variability, I could easily run

the experiment multiple times in one go. For tracking the results of the experiment, I created a

master spreadsheet and an ephemeral CSV file where results and parameters were logged (see Fig.

29), and from which I would fill the master spreadsheet once the program had run its course.

Using this system I had a totally new way to run long experiments. Each individual experiment

could take anywhere from less than one minute to over ten. At one point, as I had when using my

desktop, I left the program running overnight, but this time instead of running through the

classification process just once, the program executed more than 80 experiments and logged them

all into the results file.

Fig. 28 - Experimentation framework parameter default values

Fig. 29 - Results CSV filled automatically from the experimentation framework

 - 44 -

 8.2 Interpreting Results

Now I had a way to quickly run large amounts of tests with varying parameters, I had to be able

to interpret the results of the CSV file. For this I used the ‘pandas’ Python library which is fantastic

at working with CSV data. I used two methods depending on the experiment (see Fig. 30).

The first listed correlations of different columns in the CSV. I used this when running many

experiments and generating lots of data. It was less exact, but allowed me to correlate, for example,

a bigger batch size with a higher AUC. The second was more precise and I used it much more.

getGroupedStats would take in the CSV, group the results for a particular column (taking the

average), and provide the results in a list ordered by the AUC score. For an example of the output

see Fig. 31. The experiment compares batch sizes of 80 with those of 160 and orders the result by

the AUC score.

Fig. 30 - Interpreting experiment results

Fig. 31 - Example of grouped stats after an experiment

 - 45 -

9. EXPERIMENTS

Below is a sample of some experiments I ran along with my hypotheses and the results.

9.1 Batch Size

Test batch sizes of 16, 32, 64, 128 and 256 on just one subject. For each batch size run the program

four times and average the result. It’s believed that 256 will have the best score because it will allow

for a healthy of target and non-target classes in each batch.

The hypothesis was incorrect. The model using batches of 64 scored the highest. It’s believed that

this is because, due to the low batches, the training process was noisier and thus the model was

able to better generalise onto the new data.

9.2 Epochs

Test epochs of 100, 200, 300 and 400 on just one subject. For each epoch run the program four

times and average the result. It’s believed that 400 will score the best result. From experience,

anything above 400 and the model will be overfitting, while 400 while allow the model to iterate

enough times to develop a solid model.

Batch size Average AUC

16 52.1

32 60.1

64 70.1

128 69.9

256 68.2

 - 46 -

The hypothesis was correct. Up until 400, more epochs meant a better result.

9.3 Sample rate

Test downsampling the data again to 64Hz this time. For each epoch run the program four times

and average the result. It’s believed that the 128Hz downsampling will achieve the best result

because the model’s parameters were already tuned to that sample rate.

The hypothesis was correct. 64Hz scored worse than the 231-sample rate, likely because of how

much data was lost in the downsampling.

9.4 Shorter sample time

Previously I had tested downsampling the data. In this experiment I wanted to test what happens

if we narrow in the data closer to the time the image was shown to the subject and the time the

P300 response would expectedly by triggered. The current data spans from -0.1 to 0.8s with 0.0s

being the first moment the subject sees the image. In this experiment shifted the data such that

only 0.0 to 0.5s are recorded. The 0.9s is quite long and the thought is there could be outside noise

related to other images which make the signals harder to learn. The hypothesis is the 0.9s will be

more successful, but this is just an idea which I’d like to prove wrong.

Epochs Average AUC

100 66.3

200 69.0

300 69.1

400 69.8

Sample rate Average AUC

64 69.8

128 73.4

231 70.1

 - 47 -

The hypothesis in this case was correct, and I will keep using the data as it was provided to me

with the entire -0.1 to 0.8s span of data.

9.5 Stratify

I had already tried one technique to make the target data more interspersed amongst the dataset,

and it had worked for one subject but not for cross-subject training. Another strategy wished to

try was a strategic stratification of the data such that targets are interspersed evenly throughout the

dataset, as they were in the actual experiments (roughly one per every twenty images).

In fact, stratifying and shuffling the data scored nearly exactly the same results.

9.6 Normalisation

Up until this point I had performed no normalisation on the data. On this kind of data (EEG),

where a bit of noise and messiness is to be expected, normalisation could play a big role in helping

Sample time Average AUC

-0.1s => 0.8s 72.8

0.0s => 0.5s 56.1

Batch size Stratify Shuffle

30 68.2 67.5

60 72.4 70.5

100 70.4 69.9

200 68.3 67.2

500 66.2 66.3

1000 69.0 61.8

 - 48 -

performance of the classifier. I want to try a Z-score normalisation (or standardisation), an L1

normalisation as used in the NER2015 paper, and compare that to no normalisation, all for the

single subject trials. I hypothesise that the L1 normaliser will get the best result; it is resilient to

outliers which can make it an especially good normaliser for making sense of noisy data.

This was the greatest result to date. Clearly the normalisation was helping. L1 normalisation proved

most successful, but even the standardisation helped enormously.

9.7 Number of filters

The numbers of filters were already optimised by the EEGNet authors for the data with sample

rate of 128, but I want to still try my own experimentations. I will compare the researchers’

recommendation of eight temporal filters and two spatials with sixteen temporal filters and just

one spatial. I hypothesise that the original 8,2 configuration will prove more accurate.

In fact, my hypothesis was proven wrong. The 16,1 model proved ever so slightly more accurate

over the four repetitions.

Normalising Result

Z-score 73.2

L1 normaliser 77.8

None 70.1

Model-type Result

8,2 70.3

16,1 70.8

 - 49 -

10. RESULTS

The final performance of the EEGNet on the RSVP data successfully matched the performance

of the EEGNet authors and beat the performance of the winning paper from NER2015. The final

performance of the model in cross-subject classification was an AUC score of 86.2, and with a

classification threshold of 0.5 an accuracy of 86.7%. The ROC for this AUC is depicted in Fig. 32.

For classification on just one subject the results were similar, with a repeatable AUC of 89.6 and

an accuracy at the 0.5 threshold of 86.3%.

Results from all experiments found be found in Appendixes C & D, and all results are replicable

using the GitHub repository (https://github.com/WillSmithTE/arl-eegmodels).

Fig. 32 - ROC from final cross-subject classification

 - 50 -

11. CONCLUSION

The GitHub repository ended up with over 550 commits. Some were minor fixes after finding out

the code I’d written was wrong, but most were the setup for various experiments. Many such

experiments and many commits could have been saved with more reading and research before the

coding began. The most important lesson and takeaway for me is to really understand the subject

matter and the data at hand before digging into the specifics. Having a solid understanding of the

theory leaves for less guesswork and fiddling around. Apart from that key takeaway, I learnt so

much throughout this project that it’s hard to put into words.

The process felt slow-going at the time, but by the end I hope it is clear for the reader the kind of

success that EEGNet can have in working with EEG signals. The development of such a

successful model which is capable at learning neural signals seemingly regardless of the specific

paradigm has clear real-world implications, with the potential to help and improve lives. With the

way things are trending, the integration of EEG and AI is just getting started, and many of the

most brilliant applications of such technologies are most likely still to be developed. It certainly as

a field with an open and exciting future.

 - 51 -

12. REFERENCES

Barachant, A. & Bonnet, S. 2011 “Channel Selection Procedure Using Riemannian Distance for

BCI Applications.” 2011 5th International IEEE/EMBS Conference on Neural Engineering,

2011, doi:10.1109/ner.2011.5910558.

Barachant, A., et al. 2012, “Classification of Covariance Matrices Using a Riemannian-Based

Kernel for BCI Applications.” Neurocomputing, vol. 112, 2013, pp. 172–78. Crossref,

doi:10.1016/j.neucom.2012.12.039.

Barachant, A., Rafal Cycon, et al. 2015 “Signal Processing & Classification Pipeline.” BCI

Challenge @ NER 2015, 2015. GitHub, github.com/alexandrebarachant/bci-challenge-ner-

2015.

Broad, W. 2020, “A.I. Versus the Coronavirus.” The New York Times, 26 Mar. 2020,

www.nytimes.com/2020/03/26/science/ai-versus-the-coronavirus.html?

Chernecky, Cynthia C., & Berger, B. 2013. Laboratory Tests and Diagnostic Procedures. United

States, Elsevier/Saunders, 2013.

Ciresan, D. et al. 2011, Cornell University, arxiv.org/pdf/1102.0183.pdf.

Duan, Xu, et al. “Quadcopter Flight Control Using a Non-Invasive Multi-Modal Brain

Computer Interface.” Frontiers in Neurorobotics, vol. 13, 2019. Crossref,

doi:10.3389/fnbot.2019.00023.

Handelman, G., et al. 2012, “Peering Into the Black Box of Artificial Intelligence: Evaluation

Metrics of Machine Learning Methods.” American Journal of Roentgenology, vol. 212, no. 1, 2019, pp.

38–43. Crossref, doi:10.2214/ajr.18.20224.

Jensen, M. et al. 2015, “Brain Oscillations, Hypnosis, and Hypnotizability.” American Journal of

Clinical Hypnosis, vol. 57, no. 3, 2015, pp. 230–53. Crossref, doi:10.1080/00029157.2014.976786.

Lloyd, J. 1995, "Surviving the AI Winter," in Logic Programming: The 1995 International

Symposium , MIT Press, 1995, pp.33-47

Lawhern, V. et al. 2018, “EEGNet: A Compact Convolutional Neural Network for EEG-Based

Brain–Computer Interfaces.” Journal of Neural Engineering, vol. 15, no. 5, 2018, p. 056013. Crossref,

doi:10.1088/1741-2552/aace8c.

 - 52 -

Lin, C. et al. 2015, “Extracting patterns of single-trial EEG using an adaptive learning

algorithm.” Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

IEEE Engineering in Medicine and Biology Society. Annual International Conference vol. 2015 (2015):

6642-5. doi:10.1109/EMBC.2015.7319916

Lobo, J. et al. 2007, “AUC: A Misleading Measure of the Performance of Predictive Distribution

Models.” Global Ecology and Biogeography, vol. 17, no. 2, 2007, pp. 145–51. Crossref,

doi:10.1111/j.1466-8238.2007.00358.x.

Park, S., et al. 2020, “Development of an Online Home Appliance Control System Using

Augmented Reality and an SSVEP-Based Brain–Computer Interface.” IEEE Access, vol. 7, 2020,

pp. 163604–14. Crossref, doi:10.1109/access.2019.2952613.

Pisarchik, Alexander N., et al. 2019, “From Novel Technology to Novel Applications: Comment

on ‘An Integrated Brain-Machine Interface Platform With Thousands of Channels’ by Elon

Musk and Neuralink.” Journal of Medical Internet Research, vol. 21, no. 10, 2019, p. e16356. Crossref,

doi:10.2196/16356.

Rivet, B. et al. 2009, “xDAWN algorithm to enhance evoked potentials: application to brain-

computer interface.” IEEE transactions on bio-medical engineering vol. 56,8 (2009): 2035-43.

doi:10.1109/TBME.2009.2012869

Srinivasam, R. & Nunez, P. 2012, “Electroencephalography.” Encyclopedia of Human Behavior

(Second Edition), 2012, pp. 15–23. ScienceDirect,

www.sciencedirect.com/science/article/pii/B9780123750006003955.

Torang, Arezo, et al. 2019, “An Elastic-Net Logistic Regression Approach to Generate

Classifiers and Gene Signatures for Types of Immune Cells and T Helper Cell Subsets.” BMC

Bioinformatics, vol. 20, no. 1, 2019. Crossref, doi:10.1186/s12859-019-2994-z.

Vallabhaneni, A. & Wang T., 2005, “Brain—Computer Interface.” ResearchGate, 2005, pp. 85–

121. ResearchGate, doi:10.1007/0-306-48610-5_3.

Widrow, B., & Hoff M. 1960, “ADAPTIVE SWITCHING CIRCUITS.” 1960,

doi:10.21236/ad0241531.

Niedermeyer, E, & Da, SFL 2004, Electroencephalography : Basic Principles, Clinical

Applications, and Related Fields, Wolters Kluwer, Philadelphia

 - 53 -

12. APPENDICES

Appendix A: Project Communication Log

Project Title: Applying Modern Techniques in Artificial Intelligence to Neural Activity

Student Name: William Smith Supervisor Name: Dr YK Wang

Date Event Topic of Communication Outcome

15/05/2020 Online

message

Defining the project Clearer idea of what will

go into the project and

what the basic subject

matter is

11/09/2020 Online

message

Project timeline Confirmed to finish the

project over summer

15/09/2020 Audio call Online repository I was to

use (BCI EEGNet) and

making sure I had the right

idea of the general project

Repository to work off

and clear goals to work

towards (getting the

model working from that

repository)

06/10/2020 Online

message

Discussing me being stuck

with the current result using

the BCI EEGNet repository

Just a status update

17/10/2020 Online

message

Update on a new online

repository to work off with

an update of progress on

classifying online data

YK advised me to

continue focusing on the

theory as well

19/10/2020 Online

message

Getting in touch with YK’s

PHD student (Sai) who will

assist and provide the data

Sai to provide the RSVP

dataset

 - 54 -

23/10/2020 Online

message

Checking in on the status of

getting the RSVP dataset

YK passed the message

onto his assistant Sai who

provided me with the data

11/03/2020 Online

message

Status update and request for

assurance with imbalanced

data

Supervisor advised me

that imbalanced data is

normal and provided a

good example

18/12/2020 Online

message

Overall guidance with bigger

picture, looking at the

project scope

Reaffirmation of clear

outcomes and goals of the

project

21/12/2020 Online

message

YK and Sai request a quick

update on the project

I agree to prepare some

quick basic slides sharing

progress

15/01/2021 Audio call Deliver 10 slides and short

presentation/discussion on

the status of the project and

results so far

Clear 8-point list of things

to try and ways to both

improve the model and

improve my

understanding of EEG

and AI

08/02/2021 Email Sai provides me with a report

by YK describing the RSVP

data

I have more helpful

information on the data

which helps with training

the model and writing my

report

 - 55 -

Appendix B: ARL Model Library Dependencies

Library Version

_libgcc_mutex 0.1

_openmp_mutex 4.5

_tflow_select 2.1.0

absl-py 0.10.0

astor 0.8.1

backcall 0.2.0

blas 2.17

bleach 1.5.0

c-ares 1.16.1

ca-certificates 2020.12.5

certifi 2020.12.5

cudatoolkit 9

cudnn 7.6.5

cupti 9.0.176

cycler 0.10.0

dbus 1.13.6

decorator 4.4.2

enum34 1.1.10

expat 2.2.9

fontconfig 2.13.1

freetype 2.10.3

gast 0.2.2

gettext 0.19.8.1

glib 2.66.1

google-pasta 0.2.0

grpcio 1.31.0

gst-plugins-base 1.14.5

gstreamer 1.14.5

h5py 2.10.0

hdf5 1.10.6

html5lib 0.9999999

icu 58.2

importlib-metadata 2.0.0

ipykernel 5.4.3

ipython 7.16.1

ipython-genutils 0.2.0

jedi 0.18.0

joblib 0.17.0

jpeg 9d

jupyter-client 6.1.11

jupyter-core 4.7.1

keras-applications 1.0.8

keras-preprocessing 1.1.0

kiwisolver 1.2.0

krb5 1.17.1

lcms2 2.11

ld_impl_linux-64 2.35

libblas 3.8.0

libcblas 3.8.0

libcurl 7.71.1

libedit 3.1.20191231

libev 4.33

libffi 3.2.1

libgcc-ng 9.3.0

libgfortran-ng 7.5.0

libgfortran4 7.5.0

libglib 2.66.1

libiconv 1.16

liblapack 3.8.0

liblapacke 3.8.0

libnghttp2 1.41.0

libopenblas 0.3.10

libpng 1.6.37

libprotobuf 3.13.0.1

libssh2 1.9.0

libstdcxx-ng 9.3.0

libtiff 4.1.0

 56

libuuid 2.32.1

libwebp-base 1.1.0

libxcb 1.13

libxml2 2.9.9

llvm-openmp 11.0.0

lz4-c 1.9.2

markdown 3.3.1

matplotlib 2.2.3

matplotlib-base 3.3.2

metakernel 0.27.5

mne 0.21.0

ncurses 6.2

numpy 1.19.2

oct2py 5.2.0

octave-kernel 0.32.0

olefile 0.46

openssl 1.1.1i

opt-einsum 3.3.0

pandas 1.1.3

parso 0.8.1

patsy 0.5.1

pcre 8.44

pexpect 4.8.0

pickleshare 0.7.5

pillow 8.0.0

pip 20.2.3

prompt-toolkit 3.0.14

protobuf 3.13.0.1

pthread-stubs 0.4

ptyprocess 0.7.0

pygments 2.7.4

pyparsing 2.4.7

pyqt 5.9.2

pyriemann 0.2.5

python 3.6.11

python-dateutil 2.8.1

python_abi 3.6

pytz 2020.1

pyzmq 22.0.2

qt 5.9.7

readline 8

scikit-learn 0.20.1

scipy 1.5.2

seaborn 0.11.0

seaborn-base 0.11.0

setuptools 49.6.0

sip 4.19.8

six 1.15.0

statsmodels 0.12.0

tensorboard 1.12.2

tensorflow 1.12.0

tensorflow-base 1.12.0

tensorflow-estimator 1.15.1

tensorflow-gpu 1.12.0

tensorflow-tensorboard 0.4.0

termcolor 1.1.0

tk 8.6.10

tornado 6.0.4

traitlets 4.3.3

wcwidth 0.2.5

werkzeug 1.0.1

wheel 0.35.1

wrapt 1.12.1

xorg-libxau 1.0.9

xorg-libxdmcp 1.1.3

xz 5.2.5

zipp 3.3.1

zlib 1.2.11

zstd 1.4.5

 57

Appendix C: Cross-subject Results

Epochs Batch size Sample rateKern length Dropout Learning roc_auc accuracy F1 D notes

100 1000 128 64 0.25 0.01 0.6170 0.8270 8 2

100 1000 128 64 0.25 0.01 0.5950 0.8710 8 2

300 1000 128 64 0.25 0.01 0.6520 0.6450 8 2

300 1000 128 64 0.25 0.01 0.5330 0.9270 8 2

1000 1000 128 64 0.25 0.01 0.6260 0.8280 8 2

1000 1000 128 64 0.25 0.01 0.5860 0.7780 8 2

300 2000 128 64 0.25 0.01 0.5760 0.8300 8 2

300 2000 128 64 0.25 0.01 0.6100 0.8080 8 2

300 100 128 64 0.25 0.01 0.6080 0.7790 8 2

300 100 128 64 0.25 0.01 0.6460 0.5340 8 2

1000 100 128 64 0.25 0.01 0.6640 0.7370 8 2

1000 100 128 64 0.25 0.01 0.5440 0.9020 8 2

1000 100 231 64 0.25 0.01 0.5820 0.4270 8 2 got 75% of targets right

500 100 231 115 0.25 0.01 0.5420 0.8300 8 2

500 100 231 115 0.25 0.01 0.5450 0.2970 8 2

500 100 231 115 0.25 0.1 0.5030 0.9450 8 2 1% of target right..

500 100 231 115 0.25 0.001 0.5940 0.7530 8 2

500 100 231 115 0.25 0.01 0.5600 0.8150 8 2

500 100 231 115 0.25 0.01 0.5970 0.5590 8 2

500 100 128 115 0.25 0.01 0.6370 0.5890 8 2

2000 100 128 115 0.25 0.005 0.6170 0.4790 8 2

300 1000 128 64 0.25 0.01 0.6400 0.8240 8 2 filter 0.5-20 instead of 0.5-40

300 1000 128 64 0.25 0.01 0.6710 0.7820 8 2

600 1000 128 64 0.25 0.01 0.5620 0.8910 8 2

600 1000 128 64 0.25 0.001 0.6330 0.7850 8 2

600 1000 128 64 0.25 0.001 0.6410 0.7670 8 2

300 1000 128 64 0.25 0.001 0.6450 0.7650 8 2

300 1000 128 64 0.25 0.001 0.6640 0.7490 8 2

300 1000 128 64 0.5 0.001 0.6610 0.6980 8 2

300 1000 128 64 0.5 0.001 0.6970 0.7250 8 2

300 1000 128 64 0.5 0.001 0.6860 0.7050 8 2

600 1000 128 64 0.5 0.001 0.6540 0.7040 8 2

600 1000 128 64 0.5 0.001 0.6820 0.6860 8 2

300 1000 128 64 0.5 0.001 0.6653 0.6954 8 2

300 1000 128 64 0.5 0.001 0.6895 0.6850 8 2

300 500 128 64 0.5 0.001 0.6924 0.7093 8 2

300 500 128 64 0.5 0.001 0.6784 0.6563 8 2

300 2000 128 64 0.5 0.001 0.6736 0.6548 8 2

300 2000 128 64 0.5 0.001 0.6904 0.7168 8 2

300 3000 128 64 0.5 0.001 0.6809 0.6648 8 2

300 3000 128 64 0.5 0.001 0.7064 0.6756 8 2

300 4000 128 64 0.5 0.001 0.6897 0.6854 8 2

300 4000 128 64 0.5 0.001 0.6946 0.7097 8 2

300 1000 128 64 0.5 0.001 0.6614 0.7258 16 2

300 1000 128 64 0.5 0.001 0.6761 0.7085 16 2

300 500 128 64 0.5 0.001 0.6719 0.6854 16 2

300 500 128 64 0.5 0.001 0.6546 0.7316 16 2

300 2000 128 64 0.5 0.001 0.6437 0.7751 16 2

300 2000 128 64 0.5 0.001 0.6648 0.7397 16 2

300 3000 128 64 0.5 0.001 0.6859 0.7347 16 2

300 3000 128 64 0.5 0.001 0.6843 0.7052 16 2

300 4000 128 64 0.5 0.001 0.6867 0.7022 16 2

300 4000 128 64 0.5 0.001 0.6921 0.7050 16 2

300 10000 128 64 0.5 0.001 0.6919 0.5689 8 2

 58

Epochs Batch size Sample rateKern length Dropout Learning roc_auc accuracy F1 D notes

300 10000 128 64 0.5 0.001 0.6536 0.4020 8 2

300 10000 128 64 0.5 0.001 0.6605 0.4640 16 2

300 10000 128 64 0.5 0.001 0.6716 0.5718 16 2

300 1000 128 64 0.5 0.001 0.6824 0.6941 16 1

300 1000 128 64 0.5 0.001 0.6807 0.7020 16 1

300 500 128 64 0.5 0.001 0.6824 0.6979 16 1

300 500 128 64 0.5 0.001 0.6819 0.6931 16 1

300 2000 128 64 0.5 0.001 0.6748 0.7097 16 1

300 2000 128 64 0.5 0.001 0.6743 0.7050 16 1

300 3000 128 64 0.5 0.001 0.6864 0.7168 16 1

300 3000 128 64 0.5 0.001 0.6825 0.6754 16 1

300 4000 128 64 0.5 0.001 0.6958 0.7422 16 1

300 4000 128 64 0.5 0.001 0.6980 0.6973 16 1

300 10000 128 64 0.5 0.001 0.6764 0.5395 16 1

300 10000 128 64 0.5 0.001 0.6739 0.5724 16 1

300 3000 128 64 0.5 0.001 0.7049 0.6954 8 2

300 3000 128 64 0.5 0.001 0.7030 0.6502 8 2

300 3000 128 64 0.65 0.001 0.7139 0.6296 8 2

300 3000 128 64 0.65 0.001 0.7136 0.6140 8 2

300 3000 128 64 0.8 0.001 0.7073 0.4588 8 2

300 3000 128 64 0.8 0.001 0.7085 0.4648 8 2

300 3000 128 64 0.5 0.0005 0.6802 0.6409 8 2

300 3000 128 64 0.5 0.0005 0.6957 0.6063 8 2

300 3000 128 64 0.5 0.0005 0.6907 0.6683 8 2

300 3000 128 64 0.5 0.0005 0.7062 0.6226 8 2

300 3000 128 64 0.5 0.001 0.6681 0.7459 16 2

300 3000 128 64 0.5 0.001 0.6851 0.6804 16 2

300 3000 128 64 0.5 0.001 0.6004 0.7794 32 2

300 3000 128 64 0.5 0.001 0.6463 0.7799 32 2

300 3000 128 64 0.5 0.001 0.6332 0.7776 64 2

300 3000 128 64 0.5 0.001 0.6251 0.7547 64 2

300 3000 128 64 0.5 0.001 0.5818 0.7892 128 2

300 3000 128 64 0.5 0.001 0.6101 0.7790 128 2

300 3000 128 64 0.5 0.001 0.7017 0.6893 8 1

300 3000 128 64 0.5 0.001 0.6905 0.6040 8 1

300 3000 128 64 0.5 0.001 0.7026 0.5893 8 1

300 3000 128 64 0.5 0.001 0.6929 0.6613 8 1

300 4000 64 32 0.5 0.001 0.7227 0.6388 8 2

300 4000 64 32 0.5 0.001 0.7018 0.6367 8 2

300 4000 64 32 0.5 0.001 0.6934 0.5830 8 2

300 4000 64 32 0.5 0.001 0.6967 0.6648 8 2

300 4000 64 32 0.5 0.001 0.6846 0.6003 8 4

300 4000 64 32 0.5 0.001 0.6924 0.6829 8 4

300 4000 64 32 0.5 0.001 0.6445 0.7690 32 4

300 4000 64 32 0.5 0.001 0.6151 0.7659 32 4

300 4000 64 32 0.5 0.001 0.6647 0.6415 8 8

300 4000 64 32 0.5 0.001 0.6816 0.7603 8 8

300 4000 64 32 0.5 0.001 0.6838 0.7457 16 8

300 4000 64 32 0.5 0.001 0.6554 0.7333 16 8

300 4000 64 32 0.5 0.005 0.6380 0.7039 8 8

300 4000 64 32 0.5 0.005 0.6353 0.7778 8 8

300 4000 64 32 0.5 0.005 0.6170 0.7545 16 8

300 4000 64 32 0.5 0.005 0.6285 0.8177 16 8

600 4000 64 32 0.5 0.005 0.6280 0.7526 8 8

 59

Epochs Batch size Sample rateKern length Dropout Learning roc_auc accuracy F1 D notes

600 4000 64 32 0.5 0.005 0.6250 0.7168 8 8

600 4000 64 32 0.5 0.005 0.6129 0.7353 16 8

600 4000 64 32 0.5 0.005 0.6174 0.7890 16 8

600 4000 64 32 0.5 0.001 0.6685 0.7054 8 8

600 4000 64 32 0.5 0.001 0.6726 0.7056 8 8

600 4000 64 32 0.5 0.001 0.6243 0.7720 16 8

600 4000 64 32 0.5 0.001 0.6465 0.7426 16 8

1000 4000 64 32 0.5 0.001 0.6629 0.7362 8 8

1000 4000 64 32 0.5 0.001 0.6699 0.7343 8 8

1000 4000 64 32 0.5 0.001 0.6273 0.7551 16 8

1000 4000 64 32 0.5 0.001 0.6434 0.7744 16 8

300 500 64 32 0.65 0.001 0.6887 0.6419 16 1

300 500 64 32 0.65 0.001 0.6776 0.5757 16 1

100 500 64 32 0.65 0.001 0.7067 0.5593 16 1

100 500 64 32 0.65 0.001 0.7200 0.5356 16 1

300 500 64 32 0.7 0.001 0.6964 0.5662 16 1

300 500 64 32 0.7 0.001 0.7241 0.5737 16 1

100 500 64 32 0.7 0.001 0.7097 0.5726 16 1

100 500 64 32 0.7 0.001 0.7233 0.5608 16 1

300 500 64 32 0.6 0.001 0.6957 0.6213 16 1

300 500 64 32 0.6 0.001 0.6852 0.5938 16 1

100 500 64 32 0.6 0.001 0.6939 0.5162 16 1

100 500 64 32 0.6 0.001 0.7091 0.6167 16 1

300 5000 64 32 0.65 0.001 0.6988 0.4802 16 1

300 500 64 32 0.6 0.001 0.6894 0.6471 16 1

300 500 64 32 0.6 0.001 0.6874 0.6207 16 1

300 500 64 32 0.6 0.001 0.6893 0.6394 16 2

300 500 64 32 0.6 0.001 0.6935 0.6097 16 2

300 500 64 32 0.6 0.005 0.6716 0.5907 16 1

300 500 64 32 0.6 0.005 0.6911 0.6013 16 1

300 500 64 32 0.6 0.005 0.6705 0.6941 16 2

300 500 64 32 0.6 0.005 0.6716 0.6359 16 2

300 300 64 32 0.6 0.001 0.7094 0.6473 16 1

300 300 64 32 0.6 0.001 0.6923 0.6640 16 1

300 300 64 32 0.6 0.001 0.6942 0.6600 16 2

300 300 64 32 0.6 0.001 0.6825 0.6904 16 2

300 300 64 32 0.6 0.005 0.6779 0.6440 16 1

300 300 64 32 0.6 0.005 0.6846 0.6417 16 1

300 300 64 32 0.6 0.005 0.6770 0.6084 16 2

300 300 64 32 0.6 0.005 0.6687 0.6380 16 2

300 300 64 32 0.6 0.0005 0.6977 0.6854 16 2

300 300 64 32 0.6 0.0005 0.7039 0.6521 16 2

300 300 64 32 0.6 0.0005 0.6898 0.6402 16 2

300 300 64 32 0.6 0.0005 0.6935 0.6850 16 2

500 300 64 32 0.6 0.0005 0.6777 0.6248 16 2

500 300 64 32 0.6 0.0005 0.6644 0.6448 16 2

500 300 64 32 0.6 0.0005 0.6966 0.6871 16 2

500 300 64 32 0.6 0.0005 0.6832 0.6579 16 2

500 300 64 32 0.6 0.0005 0.6667 0.7133 16 4

500 300 64 32 0.6 0.0005 0.6966 0.6985 16 4

500 300 64 32 0.6 0.0005 0.6880 0.6746 16 4

500 300 64 32 0.6 0.0005 0.6692 0.7293 16 4

500 300 64 32 0.6 0.0005 0.5660 0.5481 16 4 shuffle all

500 300 64 32 0.6 0.0005 0.5661 0.5512 16 4

 60

 Epochs Batch size Sample rateKern length Dropout Learning roc_auc accuracy F1 D notes

500 300 64 32 0.6 0.0005 0.5747 0.5449 16 4

500 300 64 32 0.6 0.0005 0.5707 0.5262 16 4

500 16 64 32 0.6 0.0005 0.5355 0.8414 16 4

500 16 64 32 0.6 0.0005 0.5596 0.8111 16 4

500 16 64 32 0.6 0.0005 0.5249 0.8529 16 4

500 16 64 32 0.6 0.0005 0.5508 0.8165 16 4

300 64 64 32 0.6 0.0005 0.5805 0.6192 16 1

300 64 64 32 0.6 0.0005 0.5999 0.5780 16 1

300 64 64 32 0.6 0.0005 0.6135 0.6465 16 1

300 64 64 32 0.6 0.0005 0.6025 0.5685 16 1

300 128 64 32 0.6 0.0005 0.5945 0.5075 16 1

300 128 64 32 0.6 0.0005 0.5838 0.5248 16 1

300 128 64 32 0.6 0.0005 0.5867 0.5360 16 1

300 128 64 32 0.6 0.0005 0.5875 0.5547 16 1

300 256 64 32 0.6 0.0005 0.5852 0.5275 16 1

300 256 64 32 0.6 0.0005 0.6065 0.5329 16 1

300 256 64 32 0.6 0.0005 0.5981 0.5314 16 1

300 256 64 32 0.6 0.0005 0.6043 0.5345 16 1

300 100 64 32 0.6 0.001 0.5971 0.5670 16 1

300 100 64 32 0.6 0.001 0.6043 0.5633 16 1

300 100 64 32 0.6 0.001 0.5923 0.5753 16 1

300 100 64 32 0.6 0.001 0.5958 0.4985 16 1

300 200 64 32 0.6 0.001 0.5942 0.5329 16 1

300 200 64 32 0.6 0.001 0.6139 0.5410 16 1

300 200 64 32 0.6 0.001 0.5873 0.5171 16 1

300 200 64 32 0.6 0.001 0.5852 0.5160 16 1

300 300 64 32 0.6 0.001 0.5844 0.4973 16 1

300 300 64 32 0.6 0.001 0.5953 0.5493 16 1

300 300 64 32 0.6 0.001 0.5736 0.5144 16 1

300 300 64 32 0.6 0.001 0.6038 0.5680 16 1

300 400 64 32 0.6 0.001 0.5951 0.5345 16 1

300 400 64 32 0.6 0.001 0.5977 0.5164 16 1

300 400 64 32 0.6 0.001 0.5924 0.5323 16 1

300 400 64 32 0.6 0.001 0.6097 0.5963 16 1

300 64 64 32 0.6 0.001 0.6765 0.7355 16 1 don't shuffle

300 64 64 32 0.6 0.001 0.6791 0.6991 16 1

300 64 64 32 0.6 0.001 0.7016 0.6854 16 1

300 64 64 32 0.6 0.001 0.7063 0.6866 16 1

300 128 64 32 0.6 0.001 0.7058 0.6556 16 1

300 128 64 32 0.6 0.001 0.6782 0.6635 16 1

300 128 64 32 0.6 0.001 0.7020 0.6710 16 1

300 128 64 32 0.6 0.001 0.6807 0.7097 16 1

300 256 64 32 0.6 0.001 0.7027 0.5820 16 1

300 256 64 32 0.6 0.001 0.7121 0.5847 16 1

300 256 64 32 0.6 0.001 0.6940 0.6219 16 1

300 256 64 32 0.6 0.001 0.7043 0.6076 16 1

100 4000 64 32 0.6 0.001 0.6987 0.4840 16 1

100 4000 64 32 0.6 0.001 0.6965 0.5287 16 1

100 4000 64 32 0.6 0.001 0.7085 0.5214 16 1

100 4000 64 32 0.6 0.001 0.6975 0.5495 16 1

200 4000 64 32 0.6 0.001 0.7064 0.5362 16 1

200 4000 64 32 0.6 0.001 0.7012 0.5452 16 1

200 4000 64 32 0.6 0.001 0.7036 0.5535 16 1

200 4000 64 32 0.6 0.001 0.7131 0.5641 16 1

 61

Epochs Batch size Sample rateKern length Dropout Learning roc_auc accuracy F1 D notes

300 4000 64 32 0.6 0.001 0.6938 0.6140 16 1

300 4000 64 32 0.6 0.001 0.6826 0.5776 16 1

300 4000 64 32 0.6 0.001 0.7043 0.5737 16 1

300 4000 64 32 0.6 0.001 0.7014 0.5643 16 1

400 4000 64 32 0.6 0.001 0.6946 0.6382 16 1

400 4000 64 32 0.6 0.001 0.6774 0.6733 16 1

400 4000 64 32 0.6 0.001 0.6982 0.5433 16 1

400 4000 64 32 0.6 0.001 0.6920 0.6067 16 1

400 128 64 32 0.6 0.001 0.6822 0.6862 16 2

400 128 64 32 0.6 0.001 0.6778 0.6854 16 2

400 128 64 32 0.6 0.001 0.6486 0.7014 16 2

400 128 64 32 0.6 0.001 0.6645 0.7129 16 2

400 64 64 32 0.6 0.001 0.6666 0.7131 16 2

400 64 64 32 0.6 0.001 0.6565 0.7466 16 2

400 64 64 32 0.6 0.001 0.6654 0.6956 16 2

400 64 64 32 0.6 0.001 0.6891 0.7370 16 2

400 32 64 32 0.6 0.001 0.6105 0.8023 16 2

400 32 64 32 0.6 0.001 0.6408 0.7996 16 2

400 32 64 32 0.6 0.001 0.6126 0.8215 16 2

400 32 64 32 0.6 0.001 0.6155 0.8005 16 2

400 16 64 32 0.6 0.001 0.5290 0.9186 16 2

400 16 64 32 0.6 0.001 0.5517 0.9166 16 2

400 16 64 32 0.6 0.001 0.5238 0.9238 16 2

400 16 64 32 0.6 0.001 0.5334 0.9195 16 2

300 4000 64 32 0.5 0.001 0.6990 0.6841 16 1

300 4000 64 32 0.5 0.001 0.6717 0.6663 16 1

300 4000 64 32 0.5 0.001 0.7003 0.6527 16 1

300 4000 64 32 0.5 0.001 0.6789 0.6573 16 1

300 4000 64 32 0.5 0.001 0.6814 0.6506 16 1

300 4000 64 32 0.5 0.001 0.6865 0.6567 16 1

300 4000 64 32 0.5 0.001 0.6864 0.6375 16 1

300 4000 64 32 0.5 0.001 0.6776 0.6284 16 1

300 4000 128 64 0.5 0.001 0.6691 0.6989 16 1

300 4000 128 64 0.5 0.001 0.6780 0.7083 16 1

300 4000 128 64 0.5 0.001 0.6448 0.6300 16 1

300 4000 128 64 0.5 0.001 0.7002 0.6939 16 1

300 4000 128 64 0.5 0.001 0.6791 0.6991 16 1

300 4000 128 64 0.5 0.001 0.6822 0.7389 16 1

300 4000 128 64 0.5 0.001 0.7050 0.6881 16 1

300 4000 128 64 0.5 0.001 0.6543 0.7122 16 1

300 4000 231 115 0.5 0.001 0.6552 0.7366 16 1

300 4000 231 115 0.5 0.001 0.6349 0.7582 16 1

300 4000 231 115 0.5 0.001 0.6338 0.7110 16 1

300 4000 231 115 0.5 0.001 0.6305 0.7160 16 1

300 4000 231 115 0.5 0.001 0.6556 0.8013 16 1

300 4000 231 115 0.5 0.001 0.6816 0.7603 16 1

300 4000 231 115 0.5 0.001 0.6754 0.6921 16 1

300 4000 231 115 0.5 0.001 0.6511 0.6384 16 1

500 60 128 64 0.5 0.001 0.6206 0.5314 8 2 stratify data

500 60 128 64 0.5 0.001 0.6291 0.5181 8 2 stratify data

500 80 128 64 0.5 0.001 0.6234 0.5104 8 2 stratify data

500 80 128 64 0.5 0.001 0.6132 0.5352 8 2 stratify data

500 100 128 64 0.5 0.001 0.6257 0.5087 8 2 stratify data

500 100 128 64 0.5 0.001 0.6353 0.5912 8 2 stratify data

 62

 Epochs Batch size Sample rateKern length Dropout Learning roc_auc accuracy F1 D notes

300 4000 128 64 0.5 0.001 0.5912 0.5612 8 2 stratify data

300 4000 128 64 0.5 0.001 0.5988 0.5462 8 2 stratify data

300 4000 128 64 0.5 0.001 0.5731 0.6064 8 2 stratify data

300 4000 128 64 0.5 0.001 0.5911 0.5171 8 2 stratify data

300 4000 128 64 0.5 0.001 0.5929 0.5878 16 1 stratify data

300 4000 128 64 0.5 0.001 0.5915 0.4682 16 1 stratify data

300 4000 128 64 0.5 0.001 0.5920 0.5862 16 1 stratify data

300 4000 128 64 0.5 0.001 0.5930 0.5558 16 1 stratify data

300 4000 128 64 0.5 0.001 0.6929 0.6914 8 2

300 4000 128 64 0.5 0.001 0.6941 0.6937 8 2

300 4000 128 64 0.5 0.001 0.6964 0.6717 8 2

300 4000 128 64 0.5 0.001 0.6911 0.6918 8 2

300 4000 128 64 0.5 0.001 0.6918 0.7270 16 1

300 4000 128 64 0.5 0.001 0.6878 0.7270 16 1

300 4000 128 64 0.5 0.001 0.6884 0.7054 16 1

300 4000 128 64 0.5 0.001 0.6969 0.7104 16 1

300 60 128 64 0.5 0.001 0.6446 0.7615 8 2

300 60 128 64 0.5 0.001 0.6965 0.7397 8 2

300 500 128 64 0.5 0.001 0.7258 0.6916 8 2 z-score all

300 500 128 64 0.5 0.001 0.7390 0.6887 8 2 z-score all

300 500 128 64 0.5 0.001 0.7117 0.6773 8 2 z-score all

300 500 128 64 0.5 0.001 0.7201 0.7297 8 2 z-score all

300 500 128 64 0.5 0.001 0.7448 0.6457 8 2 l1-norm all

300 500 128 64 0.5 0.001 0.7335 0.6602 8 2 l1-norm all

300 500 128 64 0.5 0.001 0.7442 0.5435 8 2 l1-norm all

300 500 128 64 0.5 0.001 0.7317 0.7093 8 2 l1-norm all

300 500 128 64 0.5 0.001 0.7367 0.6796 8 2

300 500 128 64 0.5 0.001 0.7231 0.6970 8 2

300 500 128 64 0.5 0.001 0.7288 0.7399 8 2

300 500 128 64 0.5 0.001 0.7344 0.7089 8 2

300 80 231 115 0.5 0.001 0.8425 0.7253 8 2

300 80 231 115 0.5 0.001 0.8220 0.7268 8 2

300 160 231 115 0.5 0.001 0.8351 0.6490 8 2

300 160 231 115 0.5 0.001 0.8006 0.7168 8 2

300 320 231 115 0.5 0.001 0.8131 0.6831 8 2

300 320 231 115 0.5 0.001 0.8155 0.6925 8 2

300 640 231 115 0.5 0.001 0.8084 0.6841 8 2

300 640 231 115 0.5 0.001 0.7783 0.6176 8 2

300 1280 231 115 0.5 0.001 0.8331 0.6692 8 2

300 1280 231 115 0.5 0.001 0.8372 0.7428 8 2

300 80 128 64 0.5 0.001 0.6172 0.6082 8 2

300 80 128 64 0.5 0.001 0.6209 0.6061 8 2

300 80 231 115 0.5 0.001 0.8337 0.7686 8 2

300 80 231 115 0.5 0.001 0.8202 0.7505 8 2

300 80 128 64 0.5 0.001 0.7377 0.7029 8 2

300 80 128 64 0.5 0.001 0.8059 0.7289 8 2

300 80 231 115 0.5 0.001 0.6427 0.5766 8 2

300 16 128 64 0.5 0.001 0.7597 0.7815 8 2

300 16 128 64 0.5 0.001 0.7852 0.6998 8 2

300 40 128 64 0.5 0.001 0.7498 0.6975 8 2

300 40 128 64 0.5 0.001 0.7605 0.8000 8 2

300 4000 128 64 0.5 0.001 0.7605 0.6987 8 2

300 4000 128 64 0.5 0.001 0.7602 0.7249 8 2

300 80 231 115 0.5 0.001 0.7987 0.9361 8 2 l1 norm

 63

Epochs Batch size Sample rateKern length Dropout Learning roc_auc accuracy F1 D notes

300 80 231 115 0.5 0.001 0.8090 0.4444 8 2 l1 norm

300 80 231 115 0.5 0.001 0.8265 0.7333 8 2 z-norm

300 80 231 115 0.5 0.001 0.7985 0.7453 8 2 z-norm

300 80 231 115 0.5 0.001 0.8623 0.8670 8 2
stratify no norm, "Best Threshold=0.356614, [[3976 529],[99 200]]
[[3391 1114],[70 229]]"

300 80 231 115 0.5 0.001 0.8450 0.7535 8 2 stratify no norm,Best Threshold=0.481907,[[3391 1114],[70 229]]

 64

Appendix D: Subject-wise Results

epochs batchSize sampleRate kernLength dropout learning roc_auc accuracy f1 D

300 1000 128 64 0.5 0.01 0.3320 0.5250 8 2

300 1000 128 64 0.5 0.01 0.3700 0.6280 8 2

300 100 128 64 0.5 0.01 0.3800 0.5500 8 2

300 100 128 64 0.5 0.01 0.3800 0.6300 8 2

300 50 128 64 0.5 0.01 0.3540 0.5660 8 2

300 50 128 64 0.25 0.01 0.3670 0.6670 8 2

300 60 128 64 0.5 0.001 0.6399 0.6628 8 2 shuffle

300 60 128 64 0.5 0.001 0.6570 0.7205 8 2

300 30 128 64 0.5 0.001 0.6035 0.7244 4 2

300 30 128 64 0.5 0.001 0.5592 0.8072 4 2

300 60 128 64 0.5 0.001 0.6212 0.6956 4 2

300 60 128 64 0.5 0.001 0.5921 0.6308 4 2

300 120 128 64 0.5 0.001 0.6177 0.6269 4 2

300 120 128 64 0.5 0.001 0.6078 0.5980 4 2

300 30 128 64 0.5 0.001 0.6137 0.6971 8 2

300 30 128 64 0.5 0.001 0.6056 0.7713 8 2

300 16 128 64 0.5 0.001 0.5724 0.8486 8 2

300 16 128 64 0.5 0.001 0.5821 0.7970 8 2

500 30 128 64 0.5 0.001 0.6402 0.7861 8 2

500 30 128 64 0.5 0.001 0.7068 0.7713 8 2 [[39 38],[260 943]]

300 30 128 64 0.3 0.001 0.6585 0.6714 8 2

300 30 128 64 0.3 0.001 0.6493 0.7237 8 2

800 30 128 64 0.5 0.001 0.6919 0.7377 8 2

800 30 128 64 0.5 0.001 0.5891 0.8267 8 2

800 30 128 64 0.6 0.001 0.6616 0.7041 8 2

800 30 128 64 0.6 0.001 0.6454 0.6854 8 2

800 30 128 64 0.7 0.001 0.6053 0.7158 8 2

800 30 128 64 0.7 0.001 0.6582 0.6979 8 2

500 30 125 62 0.5 0.001 0.5033 0.7088 8 2 use just 0-0.5s

500 30 125 62 0.5 0.001 0.5166 0.7564 8 2 use just 0-0.5s

500 30 128 64 0.5 0.001 0.6158 0.7978 8 2

500 30 128 64 0.5 0.001 0.5754 0.7869 8 2

500 30 128 64 0.5 0.001 0.5793 0.6815 8 2 stratify data

500 30 128 64 0.5 0.001 0.6472 0.7650 8 2 stratify data

500 60 128 64 0.5 0.001 0.7131 0.6807 8 2 stratify data

500 60 128 64 0.5 0.001 0.6309 0.7564 8 2 stratify data

500 100 128 64 0.5 0.001 0.6622 0.6620 8 2 stratify data

500 100 128 64 0.5 0.001 0.7156 0.6635 8 2 stratify data

500 200 128 64 0.5 0.001 0.6289 0.6760 8 2 stratify data

500 200 128 64 0.5 0.001 0.6451 0.6737 8 2 stratify data

500 500 128 64 0.5 0.001 0.7006 0.6464 8 2 stratify data

500 500 128 64 0.5 0.001 0.5931 0.5761 8 2 stratify data

500 1000 128 64 0.5 0.001 0.6543 0.6690 8 2 stratify data

500 1000 128 64 0.5 0.001 0.6556 0.6495 8 2 stratify data

500 60 128 64 0.5 0.001 0.7139 0.6503 8 2

500 60 128 64 0.5 0.001 0.6692 0.6760 8 2

500 100 128 64 0.5 0.001 0.6856 0.6518 8 2

500 100 128 64 0.5 0.001 0.6674 0.6589 8 2

500 200 128 64 0.5 0.001 0.6770 0.5941 8 2

500 200 128 64 0.5 0.001 0.6531 0.5902 8 2

500 500 128 64 0.5 0.001 0.6201 0.6105 8 2

500 500 128 64 0.5 0.001 0.6887 0.5886 8 2

500 1000 128 64 0.5 0.001 0.6731 0.5730 8 2

500 1000 128 64 0.5 0.001 0.6211 0.5847 8 2

500 100 128 64 0.5 0.001 0.6255 0.7026 8 2

500 100 128 64 0.5 0.001 0.6360 0.6674 8 2

500 100 128 64 0.5 0.001 0.6697 0.7198 8 2

500 100 128 64 0.5 0.001 0.6489 0.6151 8 2

500 100 128 64 0.5 0.001 0.6118 0.7096 16 1

500 100 128 64 0.5 0.001 0.6689 0.6526 16 1

500 100 128 64 0.5 0.001 0.6060 0.6659 16 1

500 100 128 64 0.5 0.001 0.6863 0.7510 16 1

500 100 128 64 0.5 0.001 0.6888 0.7424 8 2 z-score all

500 100 128 64 0.5 0.001 0.7021 0.7205 8 2 z-score all

500 100 128 64 0.5 0.001 0.7046 0.6963 8 2 z-score all

 65

epochs batchSize sampleRate kernLength dropout learning roc_auc accuracy f1 D

500 100 128 64 0.5 0.001 0.7051 0.6745 8 2 z-score all

500 100 128 64 0.5 0.001 0.6782 0.7377 8 2 l1-norm all

500 100 128 64 0.5 0.001 0.6894 0.7783 8 2 l1-norm all

500 100 128 64 0.5 0.001 0.6823 0.8025 8 2 l1-norm all

500 100 128 64 0.5 0.001 0.7028 0.8017 8 2 l1-norm all

500 100 128 64 0.5 0.001 0.6570 0.6729 8 2

500 100 128 64 0.5 0.001 0.6300 0.6378 8 2

500 100 128 64 0.5 0.001 0.6120 0.7057 8 2

500 100 128 64 0.5 0.001 0.6705 0.7065 8 2

300 80 231 115 0.5 0.001 0.8960 0.8806 8 2 Best Threshold=0.309149, stratify

300 80 231 115 0.5 0.001 0.8961 0.8478 8 2 Best Threshold=0.446272, stratify

	Applying Modern Techniques in Artificial Intelligence to Neural Activity
	Declaration of Originality
	Abstract
	1. Introduction
	1.1 Electroencephalography
	1.2 Artificial Intelligence in the 2010s
	1.3 The Modern Brain-Computer Interface
	1.4 EEGNet

	2. Literature Review
	2.1 The xDAWN Algorithm
	2.2 Data Normalisation
	2.3 BCI Challenge NER2015
	2.4 Separable Convolutions
	2.5 EEGNet
	2.6 Measuring Success

	3. Methodology
	4. Setup
	4.1 BCI EEGNet
	4.2 ARL EEGModels

	5. Data Exploration
	6. Model Fitting
	7. Model Improvements
	7.1 Human Error
	7.2 Class Weights
	7.3 Kernel Length
	7.4 Batch size
	7.5 Subject-wise classification
	7.6 Butterworth Filter
	7.7 Downsampling and channel filtering

	8. Experimentation Framework
	8.1 Building the framework
	8.2 Interpreting Results

	9. Experiments
	9.1 Batch Size
	9.2 Epochs
	9.3 Sample rate
	9.4 Shorter sample time
	9.5 Stratify
	9.6 Normalisation
	9.7 Number of filters

	10. Results
	11. Conclusion
	12. References
	12. Appendices
	Appendix A: Project Communication Log
	Appendix B: ARL Model Library Dependencies
	Appendix C: Cross-subject Results
	Appendix D: Subject-wise Results

